Cho hàm số y = 3 x 3 + 4 C . Có mấy phương trình tiếp tuyến của đồ thị biết tiếp tuyến tạo với đường thẳng ( d ) : - x + 3 y + 6 = 0 góc 30 °
A: 1
B: 2
C: 3
D: 4
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:
y = − x 3 + 3x + 1
b) Chỉ ra phép biến hình biến (C) thành đồ thị (C’) của hàmsố:
y = ( x + 1 ) 3 − 3x − 4
c) Dựa vào đồ thị (C’), biện luận theo m số nghiệm của phương trình:
( x + 1 ) 3 = 3x + m
d) Viết phương trình tiếp tuyến (d) của đồ thị (C’), biết tiếp tuyến đó vuông góc với đường thẳng
a)
b) Tịnh tiến (C) song song với trục Ox sang trái 1 đơn vị, ta được đồ thị (C1) của hàm số.
y = f(x) = − ( x + 1 ) 3 + 3(x + 1) + 1 hay f(x) = − ( x + 1 ) 3 + 3x + 4 (C1)
Lấy đối xứng (C1) qua trục Ox, ta được đồ thị (C’) của hàm số y = g(x) = ( x + 1 ) 3 − 3x – 4
c) Ta có: ( x + 1 ) 3 = 3x + m (1)
⇔ ( x + 1 ) 3 − 3x – 4 = m – 4
Số nghiệm của phương trình (1) là số giao điểm của hai đường :
y = g(x) = ( x + 1 ) 3 − 3x – 4 (C’) và y = m – 4 (d1)
Từ đồ thị, ta suy ra:
+) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.
+) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.
+) 1 < m < 5 , phương trình (1) có ba nghiệm.
d) Vì (d) vuông góc với đường thẳng:
nên ta có hệ số góc bằng 9.
Ta có: g′(x) = 3 ( x + 1 ) 2 – 3
g′(x) = 9 ⇔
Có hai tiếp tuyến phải tìm là:
y – 1 = 9(x – 1) ⇔ y = 9x – 8;
y + 3 = 9(x + 3) ⇔ y = 9x + 24.
Cho hàm số \(y=\dfrac{x}{x-1}\). Viết phương trình tiếp tuyến của đồ thị hàm số, biết rằng khoẳng cách từ điểm \(B\left(1;1\right)\) đến tiếp tuyến có giá trị lớn nhất.
A. \(y=x-4\)
B. \(y=x+3\)
C. \(y=-x+5\)
D. \(-x+4\)
Ta có : \(y=\dfrac{x}{x-1}=1+\dfrac{1}{x-1}\Rightarrow y'=\dfrac{-1}{\left(x-1\right)^2}\)
Giả sử M(xo ; yo) là tiếp điểm của tiếp tuyến d với đths trên \(\). Ta có :
PT d : \(y=\dfrac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_{0-1}}=\dfrac{-x}{\left(x_0-1\right)^2}+\dfrac{x_0^2}{\left(x_0-1\right)^2}\)
K/C từ B(1;1) đến d : d(B;d) = \(\left|\dfrac{\dfrac{1}{\left(x_0-1\right)^2}+1-\dfrac{x_0^2}{\left(x_0-1\right)^2}}{\sqrt{\dfrac{1}{\left(x_0-1\right)^4}+1}}\right|\)
= \(\left|\dfrac{2\left(1-x_0\right)}{\left(x_0-1\right)^2}\right|:\dfrac{\sqrt{\left(x_0-1\right)^4+1}}{\left(x_0-1\right)^2}=\dfrac{2\left|1-x_0\right|}{\sqrt{\left(1-x_0\right)^4+1}}\) \(\le\dfrac{2\left|1-x_0\right|}{\sqrt{2\left(1-x_0\right)^2}}=\sqrt{2}\)
" = " \(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)
Suy ra : y = -x hoặc y = -x + 4
\(y'=\dfrac{-1}{\left(x-1\right)^2}\)
Giả sử \(x_0\) là hoành độ tiếp điểm
Phương trình tiếp tuyến d:
\(y=-\dfrac{1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_0-1}\)
\(\Rightarrow x+\left(x_0-1\right)^2y-x_0^2=0\)
\(d\left(B;d\right)=\dfrac{\left|1+\left(x_0-1\right)^2-x_0^2\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2\left|x_0-1\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(x_0-1\right)^2}+\left(x_0-1\right)^2}}\le\dfrac{2}{\sqrt{2}}\)
Dấu "=" xảy ra khi:
\(\dfrac{1}{\left(x_0-1\right)^2}=\left(x_0-1\right)^2\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=-x\\y=-x+4\end{matrix}\right.\)
a) Tính đạo hàm của hàm số \(y=\sqrt{sinx+cosx}\)
b) Hãy viết phương trình tiếp tuyến với đồ thị (C) của hàm số \(y=\dfrac{x+3}{x-1}\) biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{4}x+5\)
a.
\(y'=\dfrac{\left(sinx+cosx\right)'}{2\sqrt{sinx+cosx}}=\dfrac{cosx-sinx}{2\sqrt{sinx+cosx}}\)
b.
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
Tiếp tuyến vuông góc với \(y=\dfrac{1}{4}x+5\) nên có hệ số góc thỏa mãn \(k.\left(\dfrac{1}{4}\right)=-1\Rightarrow k=-4\)
\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-3\\x=2\Rightarrow y=5\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4x-3\\y=-4\left(x-2\right)+5\end{matrix}\right.\)
Cho hàm số y = x 3 + 3 x 2 - 2 x - 3 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến có hệ số góc nhỏ nhất.
A.
B.
C.
D.
Đáp án C
, y’ đạt giá trị nhỏ nhất bằng –5 tại x = –1.
Cho hàm số y = x 3 + 3 x 2 - 2 x - 3 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến có hệ số góc nhỏ nhất.
A. y=7x-8
B. y=-5x-4
C. y= -5x+6
D. y=7x+6
Cho đồ thị hàm số C : y = − 2 x + 3 x − 1 . Viết phương trình tiếp tuyến của đồ thị (C) tại
giao điểm của (C) và đường thẳng y = x − 3 .
A. y = − x + 3 v à y = − x − 1
B. y = − x − 3 v à y = − x + 1
C. y = x − 3 v à y = x + 1
D. y = − x + 3 v à y = − x + 1
Đáp án B
Tọa độ giao điểm của (C) và đường thẳng y = x − 3 là nghiệm của hệ:
y = − 2 x + 3 x − 1 y = x − 3 ⇔ x = 2 y = − 1 x = 0 y = − 3 ⇒ A ( 2 ; − 1 ) B ( 0 ; − 3 )
y ' = − 1 x − 1 2
Phương trình tiếp tuyến với ( C) tại A ( 2 ; − 1 ) là:
y = − 1 2 − 1 2 ( x − 2 ) − 1 = − x + 1
Phương trình tiếp tuyến với ( C) tại B ( 0 ; − 3 ) là:
y = − 1 0 − 1 2 ( x − 0 ) − 3 = − x − 3
a) tìm hệ số góc của tiếp tuyến của đồ thị hàm số y=-x^3+3x-2 (c) tại điểm có hoành độ -3
b) viết phương trình tiếp tuyến của đồ thị hàm số (c) trên tại điểm ( ứng với tiếp điểm ) có hoành độ -3
viết phương trình tiếp tuyến của đồ thị hàm số y=x^3 -3x 4 tiếp tuyến vuông góc với đường thẳng d:y-1/3x 4=0
Ủa trước 2 số 4 kia là dấu gì vậy bạn?
\(y'=3x^2-3\)
Phương trình d: \(y-\dfrac{1}{3}x-4=0\Leftrightarrow y=\dfrac{1}{3}x+4\)
Gọi k là hệ số góc của tiếp tuyến, do tiếp tuyến vuông góc d nên:
\(k.\left(\dfrac{1}{3}\right)=-1\Rightarrow k=-3\)
Gọi \(x_0\) là hoành độ tiếp điểm \(\Rightarrow y'\left(x_0\right)=k\)
\(\Rightarrow3x^2_0-3=-3\)
\(\Rightarrow x_0=0\)
\(\Rightarrow y_0=x_0^3-4x_0+4=4\)
Phương trình tiếp tuyến:
\(y=-3\left(x-0\right)+4\Leftrightarrow y=-3x+4\)
Cho hàm số y = x + 2 x + 1 có đồ thị (C). Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị (C) với trục tung là
A. y = x – 2
B. y = –x + 2
C. y = –x + 1
D. y = –x –2