Những câu hỏi liên quan
PB
Xem chi tiết
CT
1 tháng 3 2018 lúc 12:48

Đáp án đúng : B

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 9 2019 lúc 10:20

Đáp án đúng : B

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 8 2017 lúc 3:36

Chọn A

f ' ( x )  đổi dấu khi x chạy qua -1 và 3 nên hàm số có 2 điểm cực trị.

Bình luận (0)
NV
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 7 2018 lúc 12:24

Chọn D.

Ta có 

Vậy F(x)= 1 2 x 2 + x + 1

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 12 2019 lúc 4:22

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 1 2019 lúc 12:49

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 10 2018 lúc 9:00

 

 

Do đó hàm số f(|x|)  có 3 điểm cực trị  tại x= 2; x= -2 và  x= 0

Chọn B.

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 9 2023 lúc 19:47

1) \(f\left(x\right)=2x-5\)

\(f'\left(x\right)=2\)

\(\Rightarrow f'\left(4\right)=2\)

2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)

\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)

Bình luận (0)
NT
15 tháng 9 2023 lúc 19:42

loading...  loading...  

Bình luận (0)
AN
Xem chi tiết
NL
22 tháng 6 2021 lúc 7:16

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

Bình luận (0)