Những câu hỏi liên quan
PB
Xem chi tiết
CT
24 tháng 9 2017 lúc 2:42

Chọn B

Lấy ra 3 chữ số từ 9 chữ số và sắp xếp 3 chữ số đó theo thứ tự, mỗi cách sắp xếp tạo nên 1 số có 3 chữ số khác nhau. Như vậy, có  A 9 3 số cần tìm.

* Nhận xét: Mục đích bài toán là phân biệt hai khái niệm: Chỉnh hợp và tổ hợp. Học sinh có thể giải bài này bằng phương pháp nhân: 9.8.7, và so sánh với 4 đáp án. Hai chỉnh hợp khác nhau thì có thể khác nhau về phần tử hoặc khác nhau về thứ tự các phần tử. Hai tổ hợp khác nhau thì khác nhau về phần tử.

*Lý thuyết Chỉnh hợp

- Cho tập hợp A có n phần tử và cho số nguyên k, (1 ≤ k  ≤ n). Khi lấy k phần tử của A và sắp xếp chúng theo một thứ tự, ta được một chỉnh hợp chập k của n phần tử của A (gọi tắt là một chỉnh hợp n chập k của A).

- Số các chỉnh hợp chập k của một tập hợp có n phần tử là: 

- Một số qui ước: 

*Lý thuyết Tổ hợp

- Cho tập hợp A có n phần tử và cho số nguyên k, (1 ≤  k  ≤  n). Mỗi tập hợp con của A có phần tử được gọi là một tổ hợp chập k của n phần tử của A.

- Số các chỉnh hợp chập k của một tập hợp có n phần tử là : 

Một số quy ước: với qui ước này ta có  đúng với số nguyên dương k, thỏa 0 k  n

PT 14.1. Chọn B

TH1 

TH2: vì 

Như vậy, có  số cần tìm

PT 14.2.

Chọn C

Mỗi tập con có 3 phần tử thuộc tập {1,2,...,9} xác định duy nhất một số có 3 chữ số tăng dần từ trái qua phải (đảm bảo chữ số đầu tiên khác 0).

Mỗi tập con có 3 phần tử thuộc tập {0,1,2....,9} xác định duy nhất một số có 3 chữ số giảm dần từ trái qua phải.

Như vậy, có  số cần tìm.

Bình luận (0)
TM
Xem chi tiết
NT
19 tháng 2 2023 lúc 13:56

a: \(\overline{abcd}\)

a có 7 cách chọn

b có 6 cách

c có 5 cách

d có 4 cách

=>Có 7*6*5*4=840 cách

b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)

Mỗi bộ có 3!=6(cách)

=>Có 6*3=18 cách

c: \(\overline{abcde}\)

e có 3 cách

a có 6 cách

b có 5 cách

c có 4 cách

d có 3 cách

=>Có 3*6*5*4*3=1080 cách

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 7 2017 lúc 15:37

Bình luận (0)
MT
Xem chi tiết
LL
Xem chi tiết
TK
Xem chi tiết
ND
12 tháng 9 2021 lúc 9:34

Gọi các số thỏa mãn đề là \(\overline{abcdef}\)  (đôi một khác nhau)

- Số 7 có thể ở cả 6 vị trí.

+ Nếu a=7 => Số cách chọn các số còn lại: 9.8.7.6.5=15120 (cách)

+ Nếu a\(\ne\) 7 => Số cách chọn các số còn lại: 8.9.8.7.6.5=120960(cách)

=> Số số tự nhiên thỏa mãn: 15120+120960=136080(số)

 

 

Bình luận (0)
NL
12 tháng 9 2021 lúc 16:32

Gọi chữ số cần lập là \(\overline{abcdef}\)

TH1: có mặt chữ số 0

Chọn 4 chữ số còn lại (ngoài 2 số 0 và 7): \(C_6^4=15\) cách

Hoán vị 6 chữ số: \(6!-5!=600\) cách

\(\Rightarrow15.600=9000\) số

TH2: không có mặt chữ số 0

Chọn 5 chữ số còn lại: \(C_6^5=6\) cách

Hoán vị 6 chữ số: \(6!=720\) cách

\(\Rightarrow6.720=4320\) số

Vậy có: \(9000+4320=13320\) số thỏa mãn

Bình luận (1)
PB
Xem chi tiết
CT
13 tháng 1 2019 lúc 11:05

a. Lập số có 3 chữ số thì chữ số hàng trăm phải khác 0, nên chữ số  hàng trăm có 3 cách chọn (3,5,6). Hàng chục có 3 cách chọn, hàng đơn vị có 2 cách chọn.

Vậy số các số phải tìm là: 3 x 3 x 2 = 18 (số)

b. Trong các số trên các số chia hết cho 9 là: 306, 360, 603, 630.

Bình luận (0)
PT
Xem chi tiết
H24
22 tháng 11 2014 lúc 20:11

1a) gọi số cần lập là abcde
(a khác 0...)

chọn a thuộc tập số trên\{0} => có 4 cách chọn
chọn b có 5 c
chọn c có 5c
chọn d có 5c
 chọn e có 5c
ADQT nhân có 4x5x5x5x5 = ....
vậy có....
b)chọn a khác 0 có 4 c
chọn b khác a có 4c
chọn c khác a và b có 3 c
chọn d khác a, b, c, có 2c
=> ADQT nhân có 4x4x3x2 =...
vậy...
c) chọn a khác o có 4 c
chọn các c/số còn lại là 1 chỉnh hợp chập 2 của 4 phần tử(trừ a) => có 4A2 cách
ADQT nhân có 4x 4A2 =...
Vậy...
d) tương tự câu a
 

 

Bình luận (0)
IM
8 tháng 6 2016 lúc 20:15

Ô tô đi với vận tốc 50km/giờ vì :

         100 : 2 = 50

                   đs : 50

Bình luận (0)
BB
12 tháng 7 2017 lúc 20:35

1a) gọi số cần lập là abcde
(a khác 0...)

chọn a thuộc tập số trên\{0} => có 4 cách chọn
chọn b có 5 c
chọn c có 5c
chọn d có 5c
 chọn e có 5c
ADQT nhân có 4x5x5x5x5 = ....
vậy có....
b)chọn a khác 0 có 4 c
chọn b khác a có 4c
chọn c khác a và b có 3 c
chọn d khác a, b, c, có 2c
=> ADQT nhân có 4x4x3x2 =...
vậy...
c) chọn a khác o có 4 c
chọn các c/số còn lại là 1 chỉnh hợp chập 2 của 4 phần tử(trừ a) => có 4A2 cách
ADQT nhân có 4x 4A2 =...
Vậy...
d) tương tự câu a
 

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 10 2017 lúc 2:01

Ta có  nên d {2;4;6;8}  

·Với d=4; c=5, chọn a có 7 cách, chọn b có 6 cách nên có 7.6= 42 số thỏa mãn.

· Với d=2

1. Số cần lập có dạng  chọn c có 6 cách nên có 6 số thỏa mãn.

2. Số cần lập có dạng  chọn c có 6 cách nên có 6 số thỏa mãn

3. Số cần lập có dạng  chọn a có 6 cách nên có 6 số thỏa mãn.

4. Số cần lập có dạng  chọn a có 6 cách nên có 6 số thỏa mãn.

Như vậy với d=2 có 6+6+6+6=24 số thỏa mãn.

·                 Tương tự với d=6; d=8

Vậy có tất cả 42+3.24=114 số thỏa mãn.

Chọn B.

Bình luận (0)