Phương trình sin 3 x 3 = sin 5 x 5 có 3 nghiệm phân biệt A, B, C thuộc nửa khoảng [ 0 ; π ) khi đó cosA + cosB + cosC bằng:
A. 0
B. 1 3
C. - 4 3
D. 1
Trong các phương trình sau: cos x = 5 - 3 (1); sin x = 1 - 2 (2); sin x + cos x = 2 (3), phương trình nào vô nghiệm?
A. (2)
B. (1)
C. (3)
D. (1) và (2)
Trong các phương trình sau: cos x = 5 - 3 (1); sin x = 1 - 2 (2); sin x + cos x = 2 (3), phương trình nào vô nghiệm?
A. (2).
B. (1).
C. (3).
D. (1) và (2).
Chọn C
Ta có: nên (1) và (2) có nghiệm.
Cách 1:
Xét: nên (3) vô nghiệm.
Cách 2:
Điều kiện có nghiệm của phương trình: sin x + cos x = 2 là:
(vô lý) nên (3) vô nghiệm.
Cách 3:
Vì
nên (3) vô nghiệm.
Giaỉ các phương trình lượng giác sau:
1. sin(sinx)=0
2. sin(cosx)=0
3. \(\sqrt{3}\sin-\cos x=2cos3x\)
4. \(\sin2x=sin\left(2x-\dfrac{\pi}{2}\right)\)
5. \(4\cos\left(3\pi-2x\right)=\sqrt{2}\)
3.
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
câu 2 mình sửa lại đề bài một chút là: sin(cosx)=1 ạ
1.
\(sin\left(sinx\right)=0\)
\(\Leftrightarrow sinx=k\pi\) (1)
Do \(-1\le sinx\le1\Rightarrow-1\le k\pi\le1\)
\(\Rightarrow-\dfrac{1}{\pi}\le k\le\dfrac{1}{\pi}\Rightarrow k=0\) do \(k\in Z\)
Thế vào (1)
\(\Rightarrow sinx=0\Rightarrow x=n\pi\)
2.
\(sin\left(cosx\right)=1\Leftrightarrow cosx=\dfrac{\pi}{2}+k2\pi\)
Do \(-1\le cosx\le1\Rightarrow-1\le\dfrac{\pi}{2}+k2\pi\le1\)
\(\Rightarrow-\dfrac{1}{2\pi}-\dfrac{1}{4}\le k\le\dfrac{1}{2\pi}-\dfrac{1}{4}\)
\(\Rightarrow\) Không tồn tại k thỏa mãn
Pt vô nghiệm
Số nghiệm của phương trình sin x . sin 2 x + 2 . sin x . cos 2 x + sin x + cos x sin x + cos x = 3 . cos 2 x trong khoảng - π , π là:
A. 2
B. 4
C. 3
D. 5
Giải các phương trình sau :
a) \(\cos^2x+2\sin x\cos x+5\sin^2x=2\)
b) \(3\cos^2x-2\sin2x+\sin^2x=1\)
c) \(4\cos^2x-3\sin x\cos x+3\sin^2x=1\)
Có bao nhiêu số nguyên m để phương trình ln m + 2 sin x + ln m + 3 sin x = sin x có nghiệm thực ?
A. 4.
B. 3.
C. 5.
D. 6.
Nghiệm của phương trình sin x - 3 . cos x = 2 . sin 3 x là
giải phương trình: sin(2x+pi/2)=sin(x-pi/3)
\(sin\left(2x+\dfrac{\Omega}{2}\right)=sin\left(x-\dfrac{\Omega}{3}\right)\)
=>\(\left[{}\begin{matrix}2x+\dfrac{\Omega}{2}=x-\dfrac{\Omega}{3}+k2\Omega\\2x+\dfrac{\Omega}{2}=\Omega-x+\dfrac{\Omega}{3}+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{5}{6}\Omega+k2\Omega\\3x=\dfrac{4}{3}\Omega-\dfrac{1}{2}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{5}{6}\Omega+k2\Omega\\x=\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}\end{matrix}\right.\)
giải phương trình: sin(2x+pi/2)=sin(x-pi/3)
Lời giải:
$\sin (2x+\frac{\pi}{2})=\sin (x-\frac{\pi}{3})$
\(\Rightarrow \left[\begin{matrix}\ 2x+\frac{\pi}{2}=x-\frac{\pi}{3}+2k\pi\\ 2x+\frac{\pi}{2}=\pi -(x-\frac{\pi}{3})+2k\pi\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix}\ x=\pi (2k-\frac{5}{6})\\ x=\frac{1}{3}\pi (\frac{5}{6}+2k)\end{matrix}\right.\) với $k$ nguyên bất kỳ.
Giải các phương trình sau :
a) \(2\sin^2x+\sin x\cos x-3\cos^2x=0\)
b) \(3\sin^2-4\sin x\cos x+5\cos^2x=2\)
c) \(\sin^2x+\sin2x-2\cos^2+5\cos^2x=2\)
d) \(2\cos^2x-3\sqrt{3}\sin2x-4\sin^2x=-4\)
a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.
Đặt t = tanx thì phương trình này trở thành
2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.
Vậy
b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành
3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x
⇔ sin2x - 4sinxcosx + 3cos2x = 0
⇔ tan2x - 4tanx + 3 = 0
⇔
⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.
c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương
sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔
⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.
d) 2cos2x - 3√3sin2x - 4sin2x = -4
⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0
⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0
⇔