Những câu hỏi liên quan
JE
Xem chi tiết
NL
27 tháng 1 2021 lúc 19:21

Do \(x-1\rightarrow0\) khi \(x\rightarrow1\) nên \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-5}{x-1}=2\) hữu hạn khi và chỉ khi \(f\left(x\right)-5=0\) có nghiệm \(x=1\)

\(\Leftrightarrow f\left(1\right)-5=0\Rightarrow f\left(1\right)=5\)

Tương tự ta có \(g\left(1\right)=1\)

Do đó: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{f\left(x\right).g\left(x\right)+4}-3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right).g\left(x\right)-5}{\left(x-1\right)\left(\sqrt{f\left(x\right).g\left(x\right)+4}+3\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left[f\left(x\right)-5\right].g\left(x\right)+5\left[g\left(x\right)-1\right]}{\left(x-1\right)\left(\sqrt{f\left(x\right).g\left(x\right)+4}+3\right)}\)

\(=\left(2.1+5.3\right).\dfrac{1}{\sqrt{5.1+4}+3}=\dfrac{17}{6}\)

Bình luận (10)
H24
Xem chi tiết
SH
14 tháng 3 2022 lúc 21:12

D

Bình luận (0)
NH
14 tháng 3 2022 lúc 21:13

D

Bình luận (0)
TC
14 tháng 3 2022 lúc 21:13

D

Bình luận (0)
AT
Xem chi tiết
QL
Xem chi tiết
HM
22 tháng 9 2023 lúc 15:56

a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - 1} \right) = \mathop {\lim }\limits_{x \to 1} {x^2} - \mathop {\lim }\limits_{x \to 1} 1 = {1^2} - 1 = 0\)

\(\mathop {\lim }\limits_{x \to 1} g\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1 = 1 + 1 = 2\)

b) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x} \right) = {1^2} + 1 = 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 + 2 = 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

c) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - x - 2} \right) = {1^2} - 1 - 2 =  - 2\\\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 - 2 =  - 2\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

Bình luận (0)
HM
22 tháng 9 2023 lúc 15:56

d) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left[ {\left( {{x^2} - 1} \right)\left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to 1} \left( {{x^3} + {x^2} - x - 1} \right) = {1^3} + {1^2} - 1 - 1 = 0\\\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0.2 = 0\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right).\end{array}\)

e) \(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 1 - 1 = 0\\\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}} = \frac{0}{2} = 0\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}.\end{array}\)

Bình luận (0)
NB
Xem chi tiết
NL
31 tháng 1 2021 lúc 18:24

Bạn tham khảo:

Nếu \(lim\) (x->1) \(\dfrac{f\left(x\right)-5}{x-1}=2\) và lim (x->1) \(\dfrac{g\left(x\right)-1}{x-1}=3\) thì lim (x->1... - Hoc24

 

Không giống hoàn toàn, nhưng cách làm thì giống hoàn toàn

Bình luận (0)
MA
Xem chi tiết
NL
14 tháng 4 2022 lúc 14:27

\(\lim\limits_{x\rightarrow x_0}f\left(x\right)=+\infty\)

Bình luận (0)
NC
Xem chi tiết
NL
25 tháng 4 2020 lúc 14:27

\(\lim\limits_{x\rightarrow-\infty}\left(4x^5-3x^2+1\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(4-\frac{3}{x^3}+\frac{1}{x^5}\right)=-\infty.4=-\infty\)

\(\lim\limits_{x\rightarrow4}\frac{1-x}{\left(x-4\right)^2}=\frac{-3}{0}=-\infty\)

Câu tiếp theo đề thiếu, ko thấy yêu cầu gì hết

Bình luận (0)
QL
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:19

a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} x = 1\)

b) \(f\left( 1 \right) = 1 \Rightarrow \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right).\)

Bình luận (0)
MN
Xem chi tiết
NL
26 tháng 2 2020 lúc 11:22

Câu 1: đáp án C đúng (đáp án A và B hiển nhiên sai, đáp án D chỉ đúng khi a không âm)

Câu 2: (I) sai, vì với \(x< -1\) hàm ko xác định nên ko liên tục

(II) đúng do tính chất hàm sin

(III) đúng do \(\lim\limits_{x\rightarrow1}\frac{\left|x\right|}{x}=\frac{\left|1\right|}{1}=f\left(1\right)\)

Vậy đáp án D đúng

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NL
26 tháng 3 2022 lúc 15:20

\(\lim\limits_{x\rightarrow+\infty}\dfrac{17}{x^2+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{17}{x^2}}{1+\dfrac{1}{x^2}}=\dfrac{0}{1}=0\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{-2x^2+x-1}{3+x}=\lim\limits_{x\rightarrow+\infty}x\left(\dfrac{-2+\dfrac{1}{x}-\dfrac{1}{x^2}}{\dfrac{3}{x}+1}\right)\)

Do \(\lim\limits_{x\rightarrow+\infty}x=+\infty\)

\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-2+\dfrac{1}{x}-\dfrac{1}{x^2}}{\dfrac{3}{x}+1}\right)=-2< 0\)

\(\Rightarrow\lim\limits_{x\rightarrow+\infty}x\left(\dfrac{-2+\dfrac{1}{x}-\dfrac{1}{x^2}}{\dfrac{3}{x}+1}\right)=-\infty\)

Bình luận (0)