Những câu hỏi liên quan
PB
Xem chi tiết
CT
21 tháng 12 2019 lúc 3:23

Đáp án A

Đổi:

5dm 5cm = 55cm

1m 3cm = 103cm

Chu vi của hình tam giác đó là:

55 + 103 + 67 = 225(cm)

Đáp số: 225cm.

Bình luận (0)
PN
18 tháng 12 2020 lúc 17:00

225 cm

Bình luận (0)
 Khách vãng lai đã xóa
NA
23 tháng 2 2021 lúc 13:43

A. 225 cm

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NT
4 tháng 10 2021 lúc 11:43

Chu vi tam giác đó là: 39 + 50 + 54 = 143 (cm)

Bình luận (0)
 Khách vãng lai đã xóa
VH
4 tháng 10 2021 lúc 11:50

chu vi hình tam giác là: 39+50+54=143(cm)

Bình luận (0)
 Khách vãng lai đã xóa
MB
Xem chi tiết
NT
30 tháng 3 2023 lúc 23:22

a: ha=9; hb=12; hc=16

=>hc*9=ha*16=hb*12

=>hc/16=ha/9=hb/12

=>Haitam giác này đồng dạng 

b: ha=4; hb=5; hc=6

=>ha*6=24; hb*5=25; ha*4=24

=>Hai tam giác này ko đồng dạng

Bình luận (0)
QN
Xem chi tiết
KR
13 tháng 3 2023 lúc 6:48

Gọi các cạnh của tam giác lần lượt là `x,y,z (x,y,z \ne 0)`

Các cạnh của tam giác lần lượt tỉ lệ với `2:4:5`

Nghĩa là: `x/2=y/4=z/5`

Chu vi các cạnh của tam giác là `44 cm`

`-> x+y+z=44`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2=y/4=z/5=(x+y+z)/(2+4+5)=44/11=4`

`=>`\(\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{4}=4\\\dfrac{z}{5}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=4\cdot4=16\\z=4\cdot5=20\end{matrix}\right.\)

Vậy, các cạnh của tam giác lần lượt là `8 cm, 16 cm, 20 cm.`

Bình luận (1)
H24
13 tháng 3 2023 lúc 7:35

Gọi các cạnh của tam giác lần lượt là `a,b,c `tỉ lệ với `2,4,5 (cm)`

   

      `a/2 = b/4 =c/5 ` và ` a+b+c = 44 `

 

 Áp dụng tính chất dãy tỉ số bằng nhau : 

 

 `a/2=b/4=c/5 = (a+b+c)/(2+4+5)=44/11 = 4`

Do đó : 

`a/2 = 4 => 2.4 = 8 `

 

`b/4 = 4=> 4.4 = 16 `

 

`c/5 = 4 => 5.4 = 20`

 

Vậy các cạnh của tam giác lần lượt là : ` 8(cm) , 16(cm) , 20(cm)`

Bình luận (1)
PB
Xem chi tiết
CT
27 tháng 8 2017 lúc 17:49

Chu vi của hình tam giác là:

4 + 7 + 5 = 16 (dm)

Đáp số: 16dm 

Bình luận (0)
CC
Xem chi tiết
DC
8 tháng 5 2016 lúc 9:44

hình như dựa vào tính chất dãy tỉ số bằng nhau ak pn. mk cx chỉ nhớ z thui chứ hk chắc cko lém :)

Bình luận (0)
NH
26 tháng 2 2017 lúc 7:57

Rảnh

Bình luận (0)
NV
Xem chi tiết
TT
10 tháng 8 2015 lúc 9:38

TA có 

9^2 + 12^2 = 81 + 144 = 225

15^2 = 225 

=> 9^2 + 12^2 = 15^2 

=> TAm giác ABC vuông tại A 

=> Sabc = 1/2 . 9 . 12 = 6 . 9 = 54 cm2 

Bình luận (0)
NA
Xem chi tiết
NT
18 tháng 11 2023 lúc 20:09

a: Nửa chu vi tam giác ABC là:

\(\dfrac{2+3+4}{2}=4,5\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\sqrt{4,5\left(4,5-2\right)\left(4,5-3\right)\left(4,5-4\right)}\)

\(=\sqrt{4,5\cdot2,5\cdot1,5\cdot0,5}=\dfrac{3\sqrt{15}}{4}\)(cm2)

=>\(\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{3\sqrt{15}}{4}\)

=>\(2\cdot AH=\dfrac{3\sqrt{15}}{4}\)

=>\(AH=\dfrac{3\sqrt{15}}{8}\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB^2+\dfrac{135}{64}=4\)

=>\(HB^2=\dfrac{121}{64}\)

=>HB=11/8(cm)

HB+HC=BC

=>HC+11/8=4

=>HC=4-11/8=21/8(cm)

b: Gọi BK,CE lần lượt là các đường cao ứng với các cạnh AC,AB

 

Vì BK\(\perp\)AC và CE\(\perp\)AB

nên \(S_{ABC}=\dfrac{1}{2}\cdot BK\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)

=>\(\left\{{}\begin{matrix}BK\cdot\dfrac{3}{2}=\dfrac{3\sqrt{15}}{4}\\CE\cdot1=\dfrac{3\sqrt{15}}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BK=\dfrac{\sqrt{15}}{2}\left(cm\right)\\CE=\dfrac{3\sqrt{15}}{4}\left(cm\right)\end{matrix}\right.\)

c: Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{4+9-16}{2\cdot2\cdot3}=\dfrac{-1}{4}\)

=>\(\widehat{BAC}\simeq104^029'\)

Xét ΔABH vuông tại H có \(sinB=\dfrac{AH}{AB}=\dfrac{3\sqrt{15}}{16}\)

=>\(\widehat{B}\simeq46^034'\)

Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+104^029'+46^034'=180^0\)

=>\(\widehat{ACB}=28^057'\)

Bình luận (0)
NM
Xem chi tiết
NV
13 tháng 8 2015 lúc 20:23

gọi AB,BC,AC là a ,b,c

ta có a/3=b/5=c/7=a+b+c/3+5+7=16,5/15=1,1

a/3=1,1 a=3,3

b/5=1,1  b=5,5

c/7=1,1  c=77   **** mk làm cho đấy

Bình luận (0)
H24
13 tháng 11 2017 lúc 20:51

CÔNG THỨC TÍNH CHU VI TAM GIÁC, CÁCH TÍNH CHU VI TAM GIÁC ĐÚNG NHẤT

Công thức tính chu vi tam giác, cách tính chu vi tam giác cũng được phân chia theo cách tính diện tích tam giác cân, vuông, đều. Bởi mỗi dạng tam giác đều có một cách tính chu vi khác nhau.

- Công Thức Tính Chu Vi Tam Giác Thường

Công thức tính chu vi tam giác thường áp dụng cho tất cả các dạng tam giác thường phổ biến với các cạnh thay đổi.

P = A+B+C

Trong đó:

+ a và b và c : Ba cạnh của tam giác thường

- Ví Dụ: Cho một tam giác thường ABC có chiều dài các cạnh lần lượt là 4,5,6 cm. Hỏi diện tích tam giác thường bằng bao nhiêu?

 cach tinh chu vi tam giac

Dựa theo công thức, chúng ta có thể tính chu vi tam giác như sau:

Ta có: a=AB=4 cm, b=AC=5 cm, c=BC=6cm

Suy ra: P = a+b+c = 4 + 5 + 6 = 15 cm

Như vậy chu vi tam giác ABC bằng 15 cm.

- Công Thức Tính Chu Vi Tam Giác Vuông

Công thức tính chu vi tam giác vuông áp dụng cho các dạng tam giác có đường nối vuông góc giữa đỉnh và đáy của một tam giác.

P = A+B+H

Trong đó:

+ a và b : Hai cạnh của tam giác vuông

+ h : chiều cao nối từ đỉnh xuống đáy của một tam giác.

- Ví Dụ: Có một tam giác vuông với chiều dài hai cạnh AC và BC lần lượt là 5 và 6cm. Chiều dài cạnh AB là 7cm. Hỏi chu vi tam giác vuông ABC bằng bao nhiêu.

huong dan tnh chu vi tam giac

Dựa theo công thức tính chu vi tam giác vuông, ta tính chu vi tam giac vuông như sau:

Ta có: a = AC = 6cm, b = BC = 5cm và h = AB = 4cm

Suy ra P = a+b+h = 6 + 5 + 4 = 15 cm

- Công Thức Tính Chu Vi Tam Giác Cân

Do tam giác cân có ba cạnh bằng nhau và không thay đổi nên cách tính chu vi tam giác cân cũng khá dễ dàng.

P = A X 3

Trong đó:

a là một cạnh bất kỳ trong tam giác cân

- Ví Dụ: Cho một tam giác cân với chiều dài ba cạnh bằng nhau đều bằng 5cm. Hỏi chu vi của tam giác cân này bằng bao nhiêu?

 tinh chu vi tam giac

Theo công thức tính chu vi tam giác cân, chúng ta có cách giải như sau:

a = b = c = 5cm

Suy ra: P = ax3 = 5 x 3 = 15 cm

Cách tính chu vi tam giác cân khá dễ phải không?

Đa số công thức tính chu vi tam giác đều được đưa vào phần câu hỏi thêm của nhiều bài toán yêu cầu tính diện tích tam giác bằng công thức tính tam giác có sẵn áp dụng cho cả ba dạng tam giác phổ biến là tam giác thường, vuông. Do đó nếu bạn đã nắm và triển khai đúng các tính diện tích tam giác, bạn có thể áp dụng thêm công thức tính chu vi tam giác để kiếm thêm điểm số hoặc dễ dàng giải quyết vấn đề theo ý muốn.

Nếu bạn phải nhập liệu và tính toán trên Word, việc nắm được cách cách chèn công thức toán học trong Word cũng rất quan trọng bởi cách chèn công thức toán học trong Word khá khác biệt so với việc vẽ và viết trên giấy, người dùng sẽ cần biết cách kết hợp giữa Shape và các chữ để tạo nên một hình ảnh mô tả bài toán đúng cách nhất.

http://thuthuat.taimienphi.vn/cong-thuc-tinh-chu-vi-tam-giac-22867n.aspx 
Chúc các bạn thành công!

Bình luận (0)