Biết ∫ 0 a 2 x − 2 dx = − 1 . Tính giá trị của tham số a.
A. a = 1
B. a = 3 2
C. a = 3
D. a = 2
Cho hàm số f(x) liên tục trên R Biết cận 0->pi/2 sin2x f(cos^2(x)) dx =1 Khi đó cân 0->1[2f(1-x) -3x^2+5]dx=?
Đề là cho \(\int\limits^{\dfrac{\pi}{2}}_0sin2x.f\left(cos^2x\right)dx=1\)
Tính \(\int\limits^1_0\left[2f\left(1-x\right)-3x^2+5\right]dx\)
Đúng ko nhỉ?
Xét \(\int\limits^{\dfrac{\pi}{2}}_0sin2x.f\left(cos^2x\right)dx\)
Đặt \(cos^2x=1-u\Rightarrow-2sinx.cosxdx=-du\) \(\Rightarrow sin2xdx=du\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=0\\x=\dfrac{\pi}{2}\Rightarrow u=1\end{matrix}\right.\) \(\Rightarrow I=\int\limits^1_0f\left(1-u\right)du=\int\limits^1_0f\left(1-x\right)dx\)
\(\Rightarrow\int\limits^1_0f\left(1-x\right)dx=1\)
\(\Rightarrow\int\limits^1_0\left[2f\left(1-x\right)-3x^2+5\right]dx=2\int\limits^1_0f\left(1-x\right)dx-\int\limits^1_0\left(3x^2-5\right)dx\)
\(=2.1-\left(-4\right)=6\)
Tính các tích phân sau: 1) 2 ln e e x dx ; 2) 1 3 2 0 4 x dx x ; 3) /2 /4 1 tan dx x ; 4) 1 0 x e dx ; 5) 2 1 x xe dx ; 6) 0 1 3 4 dx x ; 7) 2 1 4 4 5 dx x x ; 8) 2 0 ln 1 x dx x (HD: 1 u x ) ĐS: 1) 2 e ; 2) 16 7 5 3 ; 3) ln 2 ; 4) 2
Cho hàm số: f(x)=a(x+1)3+bxexf(x)=a(x+1)3+bxex. Tìm a, b biết: f′(0)=22f′(0)=22 và ∫01f(x)dx=5∫01f(x)dx=5
m) ∫pi6pi4cos2xsin3xsin(x+pi4)dx∫pi6pi4cos2xsin3xsin(x+pi4)dx
n) ∫0π2x−−√sinx−−√dx∫0π2xsinxdx
p) ∫12dxx(x2012+1)dx∫12dxx(x2012+1)dx
q) ∫03ln2dx(ex√3+2)2∫03ln2dx(ex3+2)2
r) ∫1eln2x+lnx(lnx+x+1)3dx∫1eln2x+lnx(lnx+x+1)3dx
s) ∫ln2ln3e2xex−1+ex−2√dx∫ln2ln3e2xex−1+ex−2dx
t) ∫0pi3x+sin2x1+cos2xdx∫0pi3x+sin2x1+cos2xdx
u)∫032x2+x−1x+1√dx∫032x2+x−1x+1dx
v) ∫01x2ln(1+x2)dx
Ai nhanh mk tik nha.
Cho hai hàm số liên tục f(x) và g(x) có nguyên hàm lần lượt là F(x) và G(x) trên [0; 2]. Biết F(0) = 0, F(2) = 1, G(2) = 1 và ∫ 0 2 F ( x ) g ( x ) d x = 3 . Tính tích phân hàm: ∫ 0 2 G ( x ) f ( x ) d x
A. I = 3.
B. I = 0.
C. I = -2.
D. I = -4.
Chọn C.
Đặt u = G ( x ) d v = f ( x ) d x ⇒ d u = G ( x ) ' d x = g ( x ) d x v = ∫ f ( x ) d x = F ( x )
Suy ra: I = G ( x ) F ( x ) 2 0 - ∫ 0 2 F ( x ) g ( x ) d x
= G(2)F(2) – G(0)F(0) – 3 = 1 – 0 – 3 = -2.
1/ \((ln\left|\dfrac{1+\sqrt{x^2+a}}{x}\right|)'=?\) \(\left(x\ne0,a>0\right)\)
Câu này em ra biểu thức nhìn hơi ghê nên ko biết làm đúng hay ko :b
2/ \(\int\dfrac{a}{x\sqrt{x^2+a}}dx\) \(\left(x\ne0,a>0\right)\)
Cứ áp dụng công thức \(\left(ln\left|u\right|\right)'=\dfrac{u'}{u}\) thôi
Còn câu dưới thì: \(\int\dfrac{axdx}{x^2\sqrt{x^2+a}}\)
Đặt \(u=\sqrt{x^2+a}\Rightarrow x^2=u^2-a\Rightarrow xdx=udu\)
\(\Rightarrow I=\int\dfrac{a.u}{u\left(u^2-a\right)}du\)
Nguyên hàm hữu tỉ khá cơ bản, tách ra bằng hệ số bất định
Cho ∫ - 3 - 1 f ( x ) d x = 1 ; ∫ 3 0 f ( x ) d x = - 2 . Tính ∫ 0 - 1 f ( x ) d x + ∫ - 3 3 f ( x ) d x
A. -1
B. -3
C. 3
D. 1
Cho hàm số f x = a x 4 + b x 2 + c có đồ thị (C). Gọi △ : y = d x + e là tiếp tuyến của (C) tại điểm A có hoành độ x=-1. Biết △ cắt (C) tại hai điểm phân biệt M , N M , N ≠ A có hoành độ lần lượt x=0;x=2. Cho biết ∫ 0 2 d x + e - f x d x = 28 5 . Tích phân ∫ - 1 0 f x - d x - e d x bằng
A. 2 5
B. 1 4
C. 2 9
D. 1 5
Câu 1: Biết \(\int_{1}^{2}f(x) dx=4;\int_{2}^{6}f(x) dx=12,tính \int_{1}^{6}f(x) dx=?\)
Câu 2:Biết
\(\int_{3}^{9}f(x) dx=12.Tính \int_{1}^{3}f(x) dx\)
Câu 1: điều kiện là hàm f(x) liên tục và khả vi trên [1;6]
\(\int\limits^6_1f\left(x\right)dx=\int\limits^2_1f\left(x\right)dx+\int\limits^6_2f\left(x\right)dx=4+12=16\)
Câu 2:
Không tính được tích phân kia, tích phân \(\int\limits^3_1f\left(3x\right)dx\) thì còn tính được
Hãy chỉ ra kết quả nào dưới đây đúng :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\sin xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\sin xdx+\int\limits^{2\pi}_{\dfrac{3\pi}{2}}\sin xdx=0\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\sqrt[3]{\sin x}-\sqrt[3]{\cos x}\right)dx=0\)
c) \(\int\limits^{\dfrac{1}{2}}_{-\dfrac{1}{2}}\ln\dfrac{1-x}{1+x}dx=0\)
d) \(\int\limits^2_0\left(\dfrac{1}{1+x+x^2+x^3}+1\right)dx=0\)
Tính tích phân các hàm lượng giác sau :
a) \(I_1=\int_1^2\left(3x^2+\cos x+\frac{1}{x}\right)dx\)
b) \(I_2=\int_1^2\left(\frac{4}{x}-5x^2+2\sqrt{x}\right)dx\)
c) \(I_3=\int_a^b\frac{\left|x\right|}{x}dx\), với ab>0
d) \(I_5=\int_0^{\frac{\pi}{2a}}\left(x+3\right)\sin ax.dx\) với a>0
e)\(I_4=\int_0^{\pi}\sqrt{\frac{1+\cos2x}{2}}dx\)
\(I_1=3\int_1^2x^2dx+\int_1^2\cos xdx+\int_1^2\frac{dx}{x}=x^3\)\(|^2 _1\)+\(\sin x\)\(|^2_1\) +\(\ln\left|x\right|\)\(|^2_1\)
\(=\left(8-1\right)+\left(\sin2-\sin1\right)+\left(\ln2-\ln1\right)\)
\(=7+\sin2-\sin1+\ln2\)
b) \(I_2=4\int_1^2\frac{dx}{x}-5\int_1^2x^4dx+2\int_1^2\sqrt{x}dx\)
\(=4\left(\ln2-\ln1\right)-\left(2^5-1^5\right)+\frac{4}{3}\left(2\sqrt{2}-1\sqrt{1}\right)\)
\(=4\ln2+\frac{8\sqrt{2}}{3}-32\frac{1}{3}\)
c) Ta cần xét 2 trường hợp 1) 0<a<b và 2) a<b<0
1) Nếu 0<a<b, khi đó \(f\left(x\right)=\frac{\left|x\right|}{x}=1\) vì \(x>0\)
Do đó
\(\int_a^bf\left(x\right)dx=\int_a^bdx=b-a\)
2) Nếu a<b<0, khi đó \(f\left(x\right)=\frac{\left|x\right|}{x}=\frac{-x}{x}=1\) vì \(x<0\)
Do đó :
\(\int_a^bf\left(x\right)dx=\int_a^b\left(-1\right)dx=-\left(b-a\right)=a-b\)