Những câu hỏi liên quan
SK
Xem chi tiết
LA
3 tháng 4 2017 lúc 22:02

Đồ thị hàm số y = sin x trên đoạn [-2π, 2π]

Dựa vào đồ thị hàm số y = sinx

a) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị bằng -1 là:

x=−π2;x=3π2x=−π2;x=3π2

b) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị âm là:

x ∈ (-π, 0) ∪ (π, 2 π)


Bình luận (0)
LK
Xem chi tiết
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 15:54

a)     Hàm số y = sinx nhận giá trị bằng 1

-        Vẽ hàm số y = sinx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)

-        Vẽ hàm số y = 1

-        Lấy giao điểm của hai hàm số y = sinx và y = 1 là A, B,...

b)     Hàm số y = sinx nhận giá trị bằng 0

-        Vẽ hàm số y = sinx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)

-        Vẽ hàm số y = 0

-        Lấy giao điểm của hai hàm số y = sinx và y = 0 là A, B, C, D, E,...

c)     Hàm số y = cosx nhận giá trị bằng – 1

-        Vẽ hàm số y = cosx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)

-        Vẽ hàm số y = - 1

-        Lấy giao điểm của hai hàm số y = cosx và y = - 1 là A, B,...

d)     Hàm số y = cosx nhận giá trị bằng 0

-        Vẽ hàm số y = cosx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)

-        Vẽ hàm số y = 0

-        Lấy giao điểm của hai hàm số y = cosx và y = 0 là C, D, E, F,...

 

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 3 2018 lúc 2:17

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

Bình luận (0)
H24
Xem chi tiết
HM
25 tháng 8 2023 lúc 13:54

Đồ thị của hàm số \(y=sin\left(x\right)\) trên đoạn \(\left[-\pi;\pi\right]\) là: 

Ta thấy đồ thị hàm số giao với đường thẳng d: \(y=\dfrac{1}{2}\) tại 2 điểm.

Do đó, phương trình \(sin\left(x\right)=\dfrac{1}{2}\) có hai giá trị \(x\in\left[-\pi;\pi\right]\) thỏa mãn 

Bình luận (0)
H24
Xem chi tiết
NL
16 tháng 9 2021 lúc 23:59

\(0< \dfrac{1}{2018}< 1\)

Kẻ 1 đường thẳng nằm ngang nằm giữa \(y=0\) và \(y=1\) ta thấy cắt đồ thị tại 5 điểm trên đoạn đã cho

\(\Rightarrow\) Pt có 5 nghiệm

undefined

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 1 2018 lúc 10:26

- Hàm số y = cosx trên đoạn [(-π)/2; 3π/2]:

Các khoảng tăng: [(-π)/2,0], [π, 3π/2].

Các khoảng giảm: [0, π ],.

- Hàm số y = |x| trên khoảng (-∞; +∞)

Khoảng tăng: [0, +∞)

Khoảng giảm (-∞, 0].

Bình luận (0)
4A
Xem chi tiết
PB
Xem chi tiết
CT
16 tháng 12 2018 lúc 5:12

Bình luận (0)