Những câu hỏi liên quan
CN
Xem chi tiết
NT
16 tháng 6 2023 lúc 8:11

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35

Bình luận (0)
H24
Xem chi tiết
QT
Xem chi tiết
NL
7 tháng 2 2021 lúc 13:09

- Thay lần lượt xo vào từng phương trình trên ta được kết quả sau :

 +, Phương trình nhận xo là nghiệm : a, b, c, d, e .

Bình luận (0)
LV
Xem chi tiết
H24
15 tháng 3 2020 lúc 14:26

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Bình luận (0)
 Khách vãng lai đã xóa
2U
15 tháng 3 2020 lúc 14:34

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

Bình luận (0)
 Khách vãng lai đã xóa
NV
7 tháng 1 2022 lúc 19:06

chiu lop 3 ma

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
MT
Xem chi tiết
H24
8 tháng 9 2018 lúc 12:17

k mk đi

ai k mk 

mk k lại

thanks

Bình luận (0)
PN
12 tháng 8 2020 lúc 7:11

không ai trả lời 

a,\(2\left(3x-1\right)-5\left(x-3\right)-9\left(2x-4\right)=24\)

\(< =>6x-2-5x+15-18x+36=24\)

\(< =>-29x+49=24< =>29x=25< =>x=\frac{25}{29}\)

b,\(2x^2+4\left(x^2-1\right)=2x\left(3x+1\right)\)

\(< =>2x^2+4x^2-4=6x^2+2x\)

\(< =>2x=-4< =>x=-\frac{4}{2}=-2\)

c, \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=4\)

\(< =>10x-6x^2+6x^2-10x-3x+21=4\)

\(< =>-3x=4-21=-17< =>x=\frac{17}{3}\)

d, \(5x\left(x+1\right)-4x\left(x+2\right)=1-x\)

\(< =>5x^2+5x-4x^2-8x=1-x\)

\(< =>x^2-3x+x-1=0\)

\(< =>x^2-2x-1=0\)

\(< =>\left(x-1\right)^2=2\)

\(< =>\orbr{\begin{cases}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
12 tháng 8 2020 lúc 8:20

Sai rồi bn:)

a, \(2\left(3x-1\right)-5\left(x-3\right)-9\left(2x-4\right)=24\)

\(\Leftrightarrow6x-2-5x+15-18x+36=24\)

\(\Leftrightarrow-17x+25=0\Leftrightarrow x=\frac{25}{17}\)

b, \(2x^2+4\left(x^2-1\right)=2x\left(3x+1\right)\)

\(\Leftrightarrow2x^2+4x^2-4=6x^2+2x\)

\(\Leftrightarrow-4-2x=0\Leftrightarrow x=-2\)

c, \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=4\)

\(\Leftrightarrow10x-6x^2+6x^2-10x-3x+21=4\)

\(\Leftrightarrow-3x+17=0\Leftrightarrow x=\frac{17}{3}\)

d, \(5x\left(x+1\right)-4x\left(x+2\right)=1-x\)

\(\Leftrightarrow5x^2+5x-4x^2-8x=1-x\)

\(\Leftrightarrow x^2-3x-1+x=0\Leftrightarrow x^2-2x-1=0\)

\(\Leftrightarrow x^2-2x+1-2=0\Leftrightarrow\left(x-1\right)^2=2\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}+1\\x=-\sqrt{2}+1\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NT
14 tháng 10 2021 lúc 22:11

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

Bình luận (0)
H24
Xem chi tiết
NT
18 tháng 5 2021 lúc 10:38

a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)

\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)

\(\Leftrightarrow-9x=18\)

hay x=-2

Vậy: S={-2}

b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)

\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)

\(\Leftrightarrow14x=7\)

hay \(x=\dfrac{1}{2}\)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)

\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)

\(\Leftrightarrow5.2x=-6.5\)

hay \(x=-\dfrac{5}{4}\)

Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)

Bình luận (0)
NT
18 tháng 5 2021 lúc 10:41

d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x+16=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

Vậy: S={-5}

e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

Vậy: S={0}

Bình luận (0)
H24
Xem chi tiết
NN
9 tháng 6 2021 lúc 9:34

a) \(2\chi-3=3\left(\chi+1\right)\)

\(\Leftrightarrow2\chi-3=3\chi+3\)

\(\Leftrightarrow2\chi-3\chi=3+3\)

\(\Leftrightarrow\chi=-6\)

Vậy phương trình có tập nghiệm S= \(\left\{-6\right\}\)

\(3\chi-3=2\left(\chi+1\right)\)

\(\Leftrightarrow3\chi-3=2\chi+2\)

\(\Leftrightarrow3\chi-2\chi=2+3\)

\(\Leftrightarrow\chi=5\)

Vậy phương trình có tập nghiệm S= \(\left\{5\right\}\)

b) \(\left(3\chi+2\right)\left(4\chi-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+2=0\\4\chi-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-2\\4\chi=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-2}{3}\\\chi=\dfrac{5}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-2}{3};\dfrac{5}{4}\right\}\)

\(\left(3\chi+5\right)\left(4\chi-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+5=0\\4\chi-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-5\\4\chi=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-5}{3}\\\chi=\dfrac{1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-5}{3};\dfrac{1}{2}\right\}\)

c) \(\left|\chi-7\right|=2\chi+3\)

Trường hợp 1: 

Nếu \(\chi-7\ge0\Leftrightarrow\chi\ge7\)

Khi đó:\(\left|\chi-7\right|=2\chi+3\)

 \(\Leftrightarrow\chi-7=2\chi+3\)

\(\Leftrightarrow\chi-2\chi=3+7\)

\(\Leftrightarrow\chi=-10\) (KTMĐK)

Trường hợp 2:

Nếu \(\chi-7\le0\Leftrightarrow\chi\le7\)

Khi đó: \(\left|\chi-7\right|=2\chi+3\)

\(\Leftrightarrow-\chi+7=2\chi+3\)

\(\Leftrightarrow-\chi-2\chi=3-7\)

\(\Leftrightarrow-3\chi=-4\)

\(\Leftrightarrow\chi=\dfrac{4}{3}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{4}{3}\right\}\)

\(\left|\chi-4\right|=5-3\chi\)

Trường hợp 1:  

Nếu \(\chi-4\ge0\Leftrightarrow\chi\ge4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow\chi-4=5-3\chi\)

\(\Leftrightarrow\chi+3\chi=5+4\)

\(\Leftrightarrow4\chi=9\)

\(\Leftrightarrow\chi=\dfrac{9}{4}\)(KTMĐK)

Trường hợp 2: Nếu \(\chi-4\le0\Leftrightarrow\chi\le4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow-\chi+4=5-3\chi\)

\(\Leftrightarrow-\chi+3\chi=5-4\)

\(\Leftrightarrow2\chi=1\)

\(\Leftrightarrow\chi=\dfrac{1}{2}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{1}{2}\right\}\)

 

 

 

 

Bình luận (0)