Những câu hỏi liên quan
DK
Xem chi tiết
HY
Xem chi tiết
HT
2 tháng 1 2016 lúc 16:26

Ta có: Â=180o-3,5.C

Mà 180o=Â+B+C

=> Â=Â+B+C-3,5C

Trừ 2 vế cho  có:

B+C-3,5C=0

=> B+C=3,5C

=> B+C=2,5C+C

=> B=2,5C

=> B=\(\frac{5}{2}\)C

=> B/C=5/2

 

 

 

Bình luận (0)
MR
2 tháng 1 2016 lúc 16:28

3 góc đều 60 độ cần  cách lm ko bn

Bình luận (0)
TH
Xem chi tiết
HG
Xem chi tiết
SK
Xem chi tiết
NH
10 tháng 5 2017 lúc 20:25

Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)

\(\Rightarrow\widehat{A}=12^o.3=36^o\)

\(\widehat{B}=12^o.5=60^o\)

\(\widehat{C}=12^o.7=84^o\)

Bình luận (0)
QN
16 tháng 7 2017 lúc 9:33

nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)

vậy : A = 3 . 12 = 36

B = 5 . 12 = 60

C = 7 . 12 = 84

=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)

Bình luận (0)
LM
25 tháng 11 2017 lúc 15:35

Gọi số đo của các góc A,B,C trong tam giác ABC lần lượt là là a,b,c

Ta có: \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\) và tổng ba góc là 180o

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{180^o}{15}=12^o\)

+) Nếu \(\dfrac{a}{3}=12\)⇒ a= 36o

+)Nếu \(\dfrac{b}{5}\)=12⇒b=60o

+)Nếu \(\dfrac{c}{7}\)=12⇒c=84o

Vậy góc A bằng 36o, góc B bằng 60o, góc C bằng 84o

Bình luận (0)
TL
Xem chi tiết
DH
11 tháng 7 2016 lúc 11:46

Ta có A,B,C tỉ lệ với 1,2,3

==>A/1=B/2=C/3

==> A+B+C/1+2+3=180ĐỘ/6=30 ĐỘ

Bình luận (0)
H24
Xem chi tiết
GC
29 tháng 5 2015 lúc 7:54

A: B:C = 1:2:3

=> A/1 = B/2 = C/3 

Áp dụng tc dãy tỉ số bằng nhau  ta đc

A/1 = B/2 = C/3 = A+B+C/6 = 180/6 = 30

=> A= 30 ; B = 60 ; C= 90

 

Bình luận (0)
PH
Xem chi tiết
PT
Xem chi tiết
NT
31 tháng 1 2024 lúc 8:05

a:

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)

=>\(\dfrac{BD}{CD}=\dfrac{3}{4}\)
=>\(\dfrac{CD}{BD}=\dfrac{4}{3}\)

=>\(\dfrac{CD+BD}{BD}=\dfrac{4+3}{3}\)

=>\(\dfrac{BC}{BD}=\dfrac{7}{3}\)

=>\(BD=\dfrac{3}{7}BC\)

=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}\)

b: Vì I là trung điểm của BC

nên \(S_{ABI}=\dfrac{1}{2}\cdot S_{ABC}\)

=>\(\dfrac{S_{ABD}}{S_{ABI}}=\dfrac{3}{7}:\dfrac{1}{2}=\dfrac{6}{7}\)

c: \(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot140=60\left(cm^2\right)\)

\(S_{ABI}=\dfrac{7}{6}\cdot S_{ABD}=\dfrac{7}{6}\cdot60=70\left(cm^2\right)\)

ta có: \(S_{ABD}+S_{AID}=S_{ABI}\)

=>\(S_{AID}+60=70\)

=>\(S_{AID}=10\left(cm^2\right)\)

Bình luận (0)