Bài 2: Một số bài toán về đại lượng tỉ lệ thuận

SK

Tam giác ABC có số đo các góc A, B, C tỉ lệ 3 : 5 : 7. Tính số đo các góc của tam giác ABC (Biết rằng tổng số đo ba góc trong một tam giác bằng \(180^0\))

NH
10 tháng 5 2017 lúc 20:25

Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)

\(\Rightarrow\widehat{A}=12^o.3=36^o\)

\(\widehat{B}=12^o.5=60^o\)

\(\widehat{C}=12^o.7=84^o\)

Bình luận (0)
QN
16 tháng 7 2017 lúc 9:33

nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)

vậy : A = 3 . 12 = 36

B = 5 . 12 = 60

C = 7 . 12 = 84

=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)

Bình luận (0)
LM
25 tháng 11 2017 lúc 15:35

Gọi số đo của các góc A,B,C trong tam giác ABC lần lượt là là a,b,c

Ta có: \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\) và tổng ba góc là 180o

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{180^o}{15}=12^o\)

+) Nếu \(\dfrac{a}{3}=12\)⇒ a= 36o

+)Nếu \(\dfrac{b}{5}\)=12⇒b=60o

+)Nếu \(\dfrac{c}{7}\)=12⇒c=84o

Vậy góc A bằng 36o, góc B bằng 60o, góc C bằng 84o

Bình luận (0)
HM
8 tháng 11 2019 lúc 15:57

Theo đề bài ta có: ˆA+ˆB+ˆC=180oA^+B^+C^=180oˆA3=ˆB5=ˆC7A^3=B^5=C^7

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

ˆA3=ˆB5=ˆC7=ˆA+ˆB+ˆC3+5+7=180o15=12oA^3=B^5=C^7=A^+B^+C^3+5+7=180o15=12o

⇒ˆA=12o.3=36o⇒A^=12o.3=36o

ˆB=12o.5=60oB^=12o.5=60o

ˆC=12o.7=84o

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HN
Xem chi tiết
KL
Xem chi tiết
AC
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
PH
Xem chi tiết
MP
Xem chi tiết