Những câu hỏi liên quan
TN
Xem chi tiết
HP
6 tháng 12 2021 lúc 21:36

Ta có: \(n_{H_2}=\dfrac{5,6}{22,4}=0,25\left(mol\right)\)

\(a.PTHH:\)

\(Mg+2HCl--->MgCl_2+H_2\left(1\right)\)

\(CuO+2HCl--->CuCl_2+H_2O\left(2\right)\)

b. Theo PT(1)\(n_{Mg}=n_{H_2}=0,25\left(mol\right)\)

\(\Rightarrow m_{Mg}=0,25.24=6\left(g\right)\)

\(\Rightarrow m_{CuO}=24,25-6=18,25\left(g\right)\)

c. Ta có: \(n_{CuO}=\dfrac{18,25}{80}=\dfrac{73}{320}\left(mol\right)\)

\(\Rightarrow n_{hh}=\dfrac{73}{320}+0,25=0,478125\left(mol\right)\)

Theo PT(1,2)\(n_{HCl}=2.n_{hh}=2.0,478125=0,95625\left(mol\right)\)

Đổi 300ml = 0,3 lít

\(\Rightarrow C_{M_{HCl}}=\dfrac{0,95625}{0,3}=3,1875M\)

Bình luận (0)
HL
Xem chi tiết
NT
9 tháng 1 2022 lúc 13:11

\(=8\cdot25-72:9=200-8=192\)

Bình luận (0)
NC
9 tháng 1 2022 lúc 13:12

= 8 . 25 - 72 : 9

= 200 - 8

= 192

Bình luận (0)
H24
9 tháng 1 2022 lúc 13:14

2^3.25-72:3^2

=8.25-72:9

=192

Bình luận (0)
VV
Xem chi tiết
H24
Xem chi tiết
H24
8 tháng 6 2021 lúc 22:20

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

Bình luận (0)
PL
Xem chi tiết
NL
23 tháng 3 2022 lúc 16:21

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x-2}+1}{\sqrt[]{x+3}-2}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{x-2}+1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)\left(\sqrt[]{x+3}+2\right)}{\left(\sqrt[]{x+3}-2\right)\left(\sqrt[]{x+3}+2\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(\sqrt[]{x+3}+2\right)}{\left(x-1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x+3}+2}{\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1}\)

\(=\dfrac{\sqrt[]{1+3}+2}{\sqrt[3]{\left(1-2\right)^2}-\sqrt[3]{1-2}+1}=\dfrac{4}{3}\)

Bình luận (1)
MT
Xem chi tiết
NL
1 tháng 11 2021 lúc 14:48

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

Bình luận (0)
SN
Xem chi tiết
PL
Xem chi tiết
NL
9 tháng 3 2022 lúc 22:18

\(\lim\dfrac{3^n+2.6^n}{6^{n-1}+5.4^n}=\lim\dfrac{6^n\left[\left(\dfrac{3}{6}\right)^n+2\right]}{6^n\left[\dfrac{1}{6}+5\left(\dfrac{4}{6}\right)^n\right]}=\lim\dfrac{\left(\dfrac{3}{6}\right)^n+2}{\dfrac{1}{6}+5\left(\dfrac{4}{6}\right)^n}=\dfrac{0+2}{\dfrac{1}{6}+0}=12\)

\(\lim\left(\sqrt{n^2+9}-n\right)=\lim\dfrac{\left(\sqrt{n^2+9}-n\right)\left(\sqrt{n^2+9}+n\right)}{\sqrt{n^2+9}+n}=\lim\dfrac{9}{\sqrt{n^2+9}+n}\)

\(=\lim\dfrac{n\left(\dfrac{9}{n}\right)}{n\left(\sqrt{1+\dfrac{9}{n^2}}+1\right)}=\lim\dfrac{\dfrac{9}{n}}{\sqrt{1+\dfrac{9}{n^2}}+1}=\dfrac{0}{1+1}=0\)

\(\lim\dfrac{\sqrt{15+9n^2}-3}{5-n}=\lim\dfrac{n\sqrt{\dfrac{15}{n^2}+9}-3}{5-n}=\lim\dfrac{n\left(\sqrt{\dfrac{15}{n^2}+9}-\dfrac{3}{n}\right)}{n\left(\dfrac{5}{n}-1\right)}\)

\(=\lim\dfrac{\sqrt{\dfrac{15}{n^2}+9}-\dfrac{3}{n}}{\dfrac{5}{n}-1}=\dfrac{\sqrt{9}-0}{0-1}=-3\)

Bình luận (1)
BB
Xem chi tiết
NT
6 tháng 1 2023 lúc 19:47

Bài 5:

a: 2x-(3-5x)=4(x+3)

=>2x-3+5x=4x+12

=>7x-3=4x+12

=>3x=15

=>x=5

b: =>5/3x-2/3+x=1+5/2-3/2x

=>25/6x=25/6

=>x=1

c: 3x-2=2x-3

=>3x-2x=-3+2

=>x=-1

d: =>2u+27=4u+27

=>u=0

e: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

=>x=1/7

f: =>-90+12x=-45+6x

=>12x-90=6x-45

=>6x-45=0

=>x=9/2

Bình luận (0)