Cho tứ giác ABCD biết 4 góc của tứ giác lập thành một cấp số cộng và tan A không xác định; B ≤ A ≤ C ≤ D . Tìm các góc còn lại?
A. 75º, 120o, 65o.
B. 75º, 114o, 156o.
C. 70o; 110o; 150o.
D. 90o; 90o; 90o.
Cho tứ giác ABCD biết 4 góc của tứ giác lập thành một cấp số cộng và góc A bằng 30o. Tìm các góc còn lại?
A. 75o ; 120o; 165o
B. 72o ; 114o; 156o
C. 70o ; 110o; 150o
D. 80o ; 110o; 135o.
Cho tứ giác ABCD biết 4 góc của tứ giác lập thành một cấp số cộng và góc A bằng 30o. Tìm công sai d ?
A. 40
B. 30
C. 35
D. 45
Chọn A
Gọi số đo các góc của tứ giác ABCD lần lượt là :
u 1 = A = 30 ; u 2 = 30 + d ; u 3 = 30 + 2 d ; u 4 = 30 + 3 d
Tổng bốn góc của tứ giác bằng 3600 nên:
u 1 + u 2 + u 3 + u 4 = 360 ⇔ 30 + 30 + d + 30 + 2 d + 30 + 3 d = 360 ⇔ 6 d = 240 ⇔ d = 40 .
Vây công sai d = 40.
Xác định 4 góc của một tứ giác lồi, biết rằng đo 4 góc lập thành 1 cấp số cộng và góc lớn nhất bằng 5 lần góc nhỏ nhất ?
Gọi d = 2a là công sai. Bốn số phải tìm là \(A=\left(x-3a\right);B=\left(x-a\right);C=\left(x+a\right);D=\left(x+3a\right)\)
Ta có hệ phương trình :
\(\begin{cases}\left(x-3a\right)+\left(x-a\right)+\left(x+a\right)+\left(x+3a\right)=360^0\\\left(x+3a\right)=5\left(x-3a\right)\end{cases}\)
\(\Leftrightarrow\begin{cases}x=90^0\\a=20^0\end{cases}\)
Bốn góc phải tìm là : \(A=30^0;B=70^0;C=110^0;D=150^0\)
Xác định số đo góc nhỏ nhất của một tứ giác lồi, biết rằng số đo 4 góc lập thành một cấp số cộng và góc lớn nhất bằng 5 lần góc nhỏ nhất.
A. 30°
B. 45°
C. 15°
D. 60°
Chọn A
Gọi d=2a là công sai. Bốn số phải tìm là:
A=(x-3a); B=(x-a); C=(x+a); D=(x+3a). Ta có hệ phương trình:
Tứ giác ABCD có số đo của các góc lập thành một cấp số cộng theo thứ tự A, B, C, D. Biết rằng góc C gấp năm lần góc A. Tính các góc của tứ giác.
Kí hiệu: ∠ : góc
Các góc của tứ giác là ∠A, ∠B, ∠C, ∠D (∠A > 0) tạo thành cấp số cộng:
⇒ ∠B = ∠A + d,
∠C = ∠A + 2d,
∠D = ∠A + 3d.
Theo giả thiết, góc C gấp năm lần góc A nên:
∠C = 5∠A
⇒ ∠A + 2d = 5∠A
⇒ 2d = 4∠A
hay d = 2.∠A
Tổng 4 góc của 1 tứ giác bằng 360º nên ta có:
⇒ ∠A + ∠B + ∠C + ∠D = 360º
⇒ ∠A + ∠A + d + ∠A + 2d + ∠A + 3d = 360º
=> 4∠A +6d = 360º
⇒ 4∠A + 12∠A = 360º ( do d = 2.ºA)
⇒ 16∠A = 360º
⇒ ∠A = 22º30'
⇒ d = 45º.
Vậy ∠A = 22º30' ; ∠B = 67º30'; ∠C = 112º30’; ∠D = 157º30'
Tứ giác ABCD có số đo (độ) của các góc lập thành một cấp số cộng theo thứ tự A, B, C, D. Biết rằng góc C gấp năm lần góc A. Tính các góc của tứ giác ?
Theo giả thiết ta có: A, B, C, D là một cấp số nhân và C = 4A
Theo tính chất của cấp số nhân ta có:
B2 = AC = A.(4A) = 4A2 ⇒ B = 2A
C2 = BD ⇒ (4A)2 = (2A).D ⇒ D = 8A
Mặt khác: A + B + C + D = 3600
⇒ A + 2A + 4A + 8A = 3600
⇒ A = 240 ⇒ B = 480, C = 960, D = 1920.
Tứ giác ABCD có số đo bốn góc A, B, C, D theo thứ tự lập thành cấp số cộng. Biết số đo góc C gấp 5 lần số đo góc A. Tính số đo các góc của tứ giác ABCD theo đơn vị độ.
Do A, B, C, D theo thứ tự lập thành một cấp số cộng nên ta có:
B = A + d; C = A + 2d; D = A + 3d.
Mặt khác: A + B + C + D = 360°
⇔ A + A + d + A + 2d + A + 3d = 360°
⇔ 4A + 6d = 360°
⇔ 2A + 3d = 180°
Ta lại có: A + 2d = 5A ⇔ d = 2A
⇒ 8A = 180°
⇒ A = 22,5° và d = 45°
⇒ B = 67,5°, C = 112,5°, D = 157,5°.
Cho tam giác ABC nhọn biết 3 góc của tam giác lập thành một cấp số cộng ; số đo góc A nhỏ nhất và sin A = 2 2 .Tìm các góc của tam giác?
A. 60º; 75º
B. 75º; 80º
C. 50º; 85º
D. 55º; 80º
Chọn A.
Ta có và tam giác ABC nhọn nên A = 45º.
A + B + C = 180 º ⇒ B + C = 180º - 45º = 135º
Do 3 góc tam giác lập thành cấp số cộng ; số đo góc A nhỏ nhất nên B = A + d; C = A + 2d.
Khi đó: B + C = A + d + A + 2d = 2A + 3d ⇒ 3d = 135º - 2.45º = 45º
⇒ d = 15º ⇒ B = A + d = 60º; C = A + 2d = 75º
cho hình vuông ABCD cạnh a.và điểm N trên AB. Biết tia CN cắt DA tại E. Tia CX cắt tia AB tại F. Gọi M là trung điểm của EF.
CMR:
a)CE=CF
b)góc AEC=góc BMC và tam giác AEC đồng dạng với tan giác MBC
c)khi điểm N chuyển động trên AB nhưng không trùng với A và B thì trung điểm M của EF luôn chạy trên 1 đường thẳng cố định
d)Đặt BN bằng x tính diện tích tứ giác ACFE theo a và x
e) Xác định vị trí của N trên AB sao cho tứ giác ACFE có diện tích gấp 3 lần diện tích tứ giác ABCD.