Tìm y : a) y + 437582 = 618391
tìm x,y thuộc Z ,biêt: (2x-1).(2x+1)=-35
tìm c,y thuộc Z , biết: (x+1)^2 + (y+1)^2 + (x-y)^2 =2
tìm x,y thuộc Z, biết: (x^2-8).(x^2-15)<0
tìm x,y thuộc Z biết: x=6.y và|x|-|y|=60
tìm a,b thuộc Z biết: |a|+|b|<2
a,5/y=1/2 (tìm y)
b,42/25:y/5=6/5(tìm y)
Giup tui vs
a) \(\dfrac{5}{y}=\dfrac{1}{2}\)
\(y=\dfrac{5\times2}{1}=10\)
b) \(\dfrac{42}{25}:\dfrac{y}{5}=\dfrac{6}{5}\)
\(\dfrac{y}{5}=\dfrac{42}{25}:\dfrac{6}{5}\)
\(\dfrac{y}{5}=\dfrac{7}{5}\)
\(y=7\)
\(\dfrac{5}{y}=\dfrac{1}{2}\\ =>y=5.2:1=10\)
\(\dfrac{42}{25}:\dfrac{y}{5}=\dfrac{6}{5}\\ =>\dfrac{y}{5}=\dfrac{42}{25}:\dfrac{6}{5}=\dfrac{42}{25}.\dfrac{5}{6}=\dfrac{7}{5}\\ =>y=\dfrac{7}{5}.5=7\)
a) \(\dfrac{5}{y}=\dfrac{1}{2}\)
\(\Rightarrow y=5\cdot2:1=10\)
b) \(\dfrac{42}{25}:\dfrac{y}{5}=\dfrac{6}{5}\)
\(\dfrac{y}{5}=\dfrac{42}{25}:\dfrac{6}{5}=\dfrac{7}{5}\)
\(\dfrac{y}{5}=\dfrac{7}{5}\)
\(\Rightarrow y=7\)
Bài 4: tìm 3 số a,b,c biết : a/5=b/7=c/10 và 2a+3b-4c=-81
Bài 5 : tìm y
a,y/4=9/y
b, y+7/20=5/y+7
c, 4-5y/3=y+2/5
Nhanhhh tickkkkkk
Bài 5 :
a) \(\dfrac{y}{4}=\dfrac{9}{y}\)
\(\Rightarrow y^2=36\left(y\ne0\right)\)
\(\Rightarrow y=\pm6\)
b) \(\dfrac{y+7}{20}=\dfrac{5}{y+7}\left(y\ne-7\right)\)
\(\Rightarrow\left(y+7\right)^2=100=10^2\)
\(\Rightarrow\left[{}\begin{matrix}y+7=10\\y+7=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=3\\y=-17\end{matrix}\right.\)
c) \(\dfrac{4-5y}{3}=\dfrac{y+2}{5}\)
\(\Rightarrow5\left(4-5y\right)=3\left(y+2\right)\)
\(\Rightarrow20-25y=3y+6\)
\(\Rightarrow28y=14\)
\(\Rightarrow y=\dfrac{14}{28}=\dfrac{1}{2}\)
Bài 4 :
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{2a}{10}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b-4c}{10+21-40}=\dfrac{81}{-9}=-9\)
\(\Rightarrow\left\{{}\begin{matrix}a=-9.5=-45\\b=-9.7=-63\\c=-9.10=-90\end{matrix}\right.\)
Đính chính Bài 4 :
\(...\dfrac{2a+3b-4c}{10+21-40}=\dfrac{-81}{-9}=9\)
\(\Rightarrow\left\{{}\begin{matrix}a=9.4=36\\b=9.7=63\\c=9.10=90\end{matrix}\right.\)
Tìm phân thức A biết: x -y/x³+y³× A = x² -2xy+y²/x²-xy+y²; x không bằng +y ,- y
Ta có:
\(\dfrac{x-y}{x^3+y^3}\cdot A=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\left(x\ne\pm y\right)\)
\(\Leftrightarrow\dfrac{x-y}{\left(x+y\right)\left(x^2-xy+y^2\right)}\cdot A=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\)
\(\Leftrightarrow A\cdot\left(x-y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\cdot\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\)
\(\Leftrightarrow A\cdot\left(x-y\right)=\left(x+y\right)\left(x-y\right)^2\)
\(\Leftrightarrow A=\dfrac{\left(x+y\right)\left(x-y\right)^2}{x-y}\)
\(\Leftrightarrow A=\left(x+y\right)\left(x-y\right)\)
\(\Leftrightarrow A=x^2-y^2\)
Bài 1:
a)Tìm hai số x; y biết x; y tỉ lệ thuận với 3; 4 và x + y = 14.
b)Tìm hai số a; b biết a; b tỉ lệ thuận với 7; 9 và 3a – 2b = 30.
c)Tìm ba số x; y; z biết x; y; z tỉ lệ thuận với 3; 4; 5 và x – y + z = 20.
d)Tìm ba số a; b; c biết a; b; c tỉ lệ thuận với 4; 7; 10 và 2a + 3b + 4c = 69.
Giúp mik với !
Theo mình là:
a/ Theo đề ta có:
x/3=y/4 và x+y=14
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=x+y=3+4=14/7=2
Từ x/3=2=>x=2.3=6
Từ y/4=2>y=2.4=8
Vậy x=6 và y=8.
b/
Theo đề ta có:
a/7=b/9 và 3a-2b=30
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10
Từ a/7=10=>a=10.7=70
Từ b/9=10=>b/10.9=90
Vậy a=70 và b=90.
c/
Theo đề ta có:
x/3=y/4=z/5 và x-y+z=20
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=z/5=x-y+z/3-4=5=20/4=5
Từ x/3=5=>x=5.3=15
Từ y/4=5=>y=5.4=20
Từ z/5=5=>z=5.5=25
Vậy x=15,y=20 và z=25
d/
Theo đề ta có:
a/4=b/7=c/10 và 2a+3b+4c=69
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1
Từ a/4=1=>a=1.4=4
Từ b/7=1=>b=1.7=7
Từ c/10=1=>c=1.10=10
Vậy a=4,b=7 và c=10
a) x=6 y=8
b) a=70 b=90
c) x=15 y=20 z=25
d) a=4 b=7 c=10
bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)
_HT_
1. Tìm a,b ∈ N
\(2^a-2^b=256\)
2.Tìm x,y ∈ Z
\(2020^x+2020^y=2020^{x+y}\)
\(1,\Rightarrow2^b\left(2^{a-b}-1\right)=256=2^8\left(a>b\right)\)
Do \(2^b\) chẵn, \(2^{a-b}-1\) lẻ, \(2^8\) chẵn nên \(2^{a-b}-1=1\Leftrightarrow2^{a-b}=2\Leftrightarrow a-b=1\)
\(\Leftrightarrow2^b\cdot1=2^8\Leftrightarrow b=8\Leftrightarrow a=9\)
Vậy \(\left(a;b\right)=\left(8;9\right)\)
Bài 1:
Từ đkđb hiển nhiên $a>b\Rightarrow a-b\geq 1$
$2^a-2^b=256$
$\Leftrightarrow 2^b(2^{a-b}-1)=256=2^8$
$\Leftrightarrow 2^{a-b}-1=2^{8-b}$
Với $a-b\geq 1$ thì $2^{a-b}$ chẵn, kéo theo $2^{a-b}-1$ lẻ
$\Rightarrow 2^{8-b}$ lẻ. Điều này xảy ra khi $8-b=0$
$\Leftrightarrow b=8$. Khi đó: $2^{a-b}-1=2^0=1$
$\Leftrightarrow 2^{a-b}=2=2^1\Leftrightarrow a-b=1$
$\Leftrightarrow a=b+1=9$
Vậy $(a,b)=(9,8)$
Bài 2: Không mất tổng quát giả sử $x\geq y$
$2020^x+2020^y=2020^{x+y}$
$\Leftrightarrow 2020^y(2020^{x-y}+1-2020^x)=0$
$\Leftrightarrow 2020^{x-y}+1-2020^x=0$
$\Rightarrow 2020^x=2020^{x-y}+1>1\Rightarrow x>0$
$\Rightarrow 2020^{x-y}+1\vdots 2020$
$\Rightarrow 2020^{x-y}\not\vdots 2020$
$\Rightarrow x-y=0$. Mà $2020^0+1=2\not\vdots 2020$ nên loại
Vậy không tồn tại $x,y$ thỏa mãn.
tìm x :
A, (2x+1)^3=2^3 . 5^2 - 75
B, tìm x, y là số nguyên : x . Y - x + y = 4
C, tìm x, y là số tự nhiên : 5^x+12^y=26
a: \(\Leftrightarrow\left(2x+1\right)^3=8\cdot25-75=125\)
=>2x+1=5
hay x=2
c: x=2; y=0
Cho hàm số y=ax+3 a. Tìm hệ số a, biết rằng đồ thị của hàm số y=ax+3 đi qua điểm A (1;4) b. Vẽ đồ thị của hàm số y=ax+3 với hệ số a vừa tìm được ở câu a c. Tìm tọa độ giao điểm của 2 đồ thị hàm số y=ax+3(với hệ số a vừa tìm được ở câu a) và hàm số y=2x+5
\(a,\Leftrightarrow a+3=4\Leftrightarrow a=1\\ \Leftrightarrow y=x+3\\ c,\text{PT hoành độ giao điểm: }x+3=2x+5\Leftrightarrow x=-2\Leftrightarrow y=1\Leftrightarrow A\left(-2;1\right)\\ \text{Vậy tọa độ giao điểm 2 đths là }A\left(-2;1\right)\)
a) Tìm một số x/y biết 2x -y / x+y = 2/3
b) Tìm x,y biết x/2 = y/5 và y-x = 15
b,Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y}{5}=\frac{x}{2}=\frac{y-x}{5-2}=\frac{15}{3}=5\)
Vậy : \(\hept{\begin{cases}\frac{y}{5}=5\Leftrightarrow y=25\\\frac{x}{2}=5\Leftrightarrow x=10\end{cases}}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow\frac{6x-3y}{2x+2y}=0\)
\(\Rightarrow6x-3y=0\)
\(3.\left(2x-y\right)=0\Rightarrow2x-y=0\)
\(\Rightarrow2x=y\)
\(adtcdts=ntc:\)
\(\frac{y}{5}=\frac{x}{2}=\frac{y-x}{5-2}=\frac{15}{3}=5\)
Cứ thế tính x,y