Những câu hỏi liên quan
NA
Xem chi tiết
MH
Xem chi tiết
H9
15 tháng 10 2023 lúc 18:10

a) \(\dfrac{5}{y}=\dfrac{1}{2}\)

\(y=\dfrac{5\times2}{1}=10\)

b) \(\dfrac{42}{25}:\dfrac{y}{5}=\dfrac{6}{5}\)

\(\dfrac{y}{5}=\dfrac{42}{25}:\dfrac{6}{5}\)

\(\dfrac{y}{5}=\dfrac{7}{5}\)

\(y=7\)

Bình luận (0)
DT
15 tháng 10 2023 lúc 18:11

\(\dfrac{5}{y}=\dfrac{1}{2}\\ =>y=5.2:1=10\)

 

\(\dfrac{42}{25}:\dfrac{y}{5}=\dfrac{6}{5}\\ =>\dfrac{y}{5}=\dfrac{42}{25}:\dfrac{6}{5}=\dfrac{42}{25}.\dfrac{5}{6}=\dfrac{7}{5}\\ =>y=\dfrac{7}{5}.5=7\)

Bình luận (0)
NN
15 tháng 10 2023 lúc 18:11

a) \(\dfrac{5}{y}=\dfrac{1}{2}\)

\(\Rightarrow y=5\cdot2:1=10\)

b) \(\dfrac{42}{25}:\dfrac{y}{5}=\dfrac{6}{5}\)

\(\dfrac{y}{5}=\dfrac{42}{25}:\dfrac{6}{5}=\dfrac{7}{5}\)

\(\dfrac{y}{5}=\dfrac{7}{5}\)

\(\Rightarrow y=7\)

Bình luận (0)
DN
Xem chi tiết
NT
22 tháng 8 2023 lúc 12:47

Bài 5 :

a) \(\dfrac{y}{4}=\dfrac{9}{y}\)

\(\Rightarrow y^2=36\left(y\ne0\right)\)

\(\Rightarrow y=\pm6\)

b) \(\dfrac{y+7}{20}=\dfrac{5}{y+7}\left(y\ne-7\right)\)

\(\Rightarrow\left(y+7\right)^2=100=10^2\)

\(\Rightarrow\left[{}\begin{matrix}y+7=10\\y+7=-10\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=3\\y=-17\end{matrix}\right.\)

c) \(\dfrac{4-5y}{3}=\dfrac{y+2}{5}\)

\(\Rightarrow5\left(4-5y\right)=3\left(y+2\right)\)

\(\Rightarrow20-25y=3y+6\)

\(\Rightarrow28y=14\)

\(\Rightarrow y=\dfrac{14}{28}=\dfrac{1}{2}\)

Bình luận (0)
NT
22 tháng 8 2023 lúc 12:39

Bài 4 :

\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}\)

\(\Rightarrow\dfrac{2a}{10}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b-4c}{10+21-40}=\dfrac{81}{-9}=-9\)

\(\Rightarrow\left\{{}\begin{matrix}a=-9.5=-45\\b=-9.7=-63\\c=-9.10=-90\end{matrix}\right.\)

Bình luận (0)
NT
22 tháng 8 2023 lúc 12:49

Đính chính Bài 4 :

\(...\dfrac{2a+3b-4c}{10+21-40}=\dfrac{-81}{-9}=9\)

\(\Rightarrow\left\{{}\begin{matrix}a=9.4=36\\b=9.7=63\\c=9.10=90\end{matrix}\right.\)

Bình luận (0)
TQ
Xem chi tiết
H9
16 tháng 10 2023 lúc 18:18

Ta có: 

\(\dfrac{x-y}{x^3+y^3}\cdot A=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\left(x\ne\pm y\right)\)

\(\Leftrightarrow\dfrac{x-y}{\left(x+y\right)\left(x^2-xy+y^2\right)}\cdot A=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\)

\(\Leftrightarrow A\cdot\left(x-y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\cdot\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\)

\(\Leftrightarrow A\cdot\left(x-y\right)=\left(x+y\right)\left(x-y\right)^2\)

\(\Leftrightarrow A=\dfrac{\left(x+y\right)\left(x-y\right)^2}{x-y}\)

\(\Leftrightarrow A=\left(x+y\right)\left(x-y\right)\)

\(\Leftrightarrow A=x^2-y^2\)

Bình luận (0)
CP
Xem chi tiết
ND
28 tháng 11 2021 lúc 20:59

Theo mình là:

a/ Theo đề ta có:

x/3=y/4 và x+y=14

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

x/3=y/4=x+y=3+4=14/7=2

Từ x/3=2=>x=2.3=6

Từ y/4=2>y=2.4=8

Vậy x=6 và y=8.

b/

Theo đề ta có:

a/7=b/9 và 3a-2b=30

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10

Từ a/7=10=>a=10.7=70

Từ b/9=10=>b/10.9=90

Vậy a=70 và b=90.

c/

Theo đề ta có:

x/3=y/4=z/5 và x-y+z=20

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

x/3=y/4=z/5=x-y+z/3-4=5=20/4=5

Từ x/3=5=>x=5.3=15

Từ y/4=5=>y=5.4=20

Từ z/5=5=>z=5.5=25

Vậy x=15,y=20 và z=25

d/

Theo đề ta có:

a/4=b/7=c/10 và 2a+3b+4c=69

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1

Từ a/4=1=>a=1.4=4

Từ b/7=1=>b=1.7=7

Từ c/10=1=>c=1.10=10

Vậy a=4,b=7 và c=10

Bình luận (0)
TH
28 tháng 11 2021 lúc 21:09

a) x=6    y=8
b) a=70   b=90
c) x=15   y=20   z=25

d) a=4  b=7  c=10 

bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)

_HT_

Bình luận (0)
MH
Xem chi tiết
NM
6 tháng 10 2021 lúc 20:40

\(1,\Rightarrow2^b\left(2^{a-b}-1\right)=256=2^8\left(a>b\right)\)

Do \(2^b\) chẵn, \(2^{a-b}-1\) lẻ, \(2^8\) chẵn nên \(2^{a-b}-1=1\Leftrightarrow2^{a-b}=2\Leftrightarrow a-b=1\)

\(\Leftrightarrow2^b\cdot1=2^8\Leftrightarrow b=8\Leftrightarrow a=9\)

Vậy \(\left(a;b\right)=\left(8;9\right)\) 

Bình luận (3)
AH
6 tháng 10 2021 lúc 21:29

Bài 1:

Từ đkđb hiển nhiên $a>b\Rightarrow a-b\geq 1$

$2^a-2^b=256$ 

$\Leftrightarrow 2^b(2^{a-b}-1)=256=2^8$

$\Leftrightarrow 2^{a-b}-1=2^{8-b}$

Với $a-b\geq 1$ thì $2^{a-b}$ chẵn, kéo theo $2^{a-b}-1$ lẻ

$\Rightarrow 2^{8-b}$ lẻ. Điều này xảy ra khi $8-b=0$

$\Leftrightarrow b=8$. Khi đó: $2^{a-b}-1=2^0=1$

$\Leftrightarrow 2^{a-b}=2=2^1\Leftrightarrow a-b=1$

$\Leftrightarrow a=b+1=9$ 

Vậy $(a,b)=(9,8)$

Bình luận (0)
AH
6 tháng 10 2021 lúc 22:29

Bài 2: Không mất tổng quát giả sử $x\geq y$

$2020^x+2020^y=2020^{x+y}$

$\Leftrightarrow 2020^y(2020^{x-y}+1-2020^x)=0$

$\Leftrightarrow 2020^{x-y}+1-2020^x=0$

$\Rightarrow 2020^x=2020^{x-y}+1>1\Rightarrow x>0$

$\Rightarrow 2020^{x-y}+1\vdots 2020$

$\Rightarrow 2020^{x-y}\not\vdots 2020$

$\Rightarrow x-y=0$. Mà $2020^0+1=2\not\vdots 2020$ nên loại 

Vậy không tồn tại $x,y$ thỏa mãn.

Bình luận (0)
HT
Xem chi tiết
NT
20 tháng 2 2022 lúc 20:07

a: \(\Leftrightarrow\left(2x+1\right)^3=8\cdot25-75=125\)

=>2x+1=5

hay x=2

c: x=2; y=0

Bình luận (0)
HY
Xem chi tiết
NM
1 tháng 12 2021 lúc 11:06

\(a,\Leftrightarrow a+3=4\Leftrightarrow a=1\\ \Leftrightarrow y=x+3\\ c,\text{PT hoành độ giao điểm: }x+3=2x+5\Leftrightarrow x=-2\Leftrightarrow y=1\Leftrightarrow A\left(-2;1\right)\\ \text{Vậy tọa độ giao điểm 2 đths là }A\left(-2;1\right)\)

Bình luận (0)
CN
1 tháng 12 2021 lúc 11:40

làm hết luôn à

 

Bình luận (0)
DH
Xem chi tiết
HS
17 tháng 6 2019 lúc 14:38

b,Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{y}{5}=\frac{x}{2}=\frac{y-x}{5-2}=\frac{15}{3}=5\)

Vậy : \(\hept{\begin{cases}\frac{y}{5}=5\Leftrightarrow y=25\\\frac{x}{2}=5\Leftrightarrow x=10\end{cases}}\)

Bình luận (0)
H24
17 tháng 6 2019 lúc 14:40

\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow\frac{6x-3y}{2x+2y}=0\)

\(\Rightarrow6x-3y=0\)

\(3.\left(2x-y\right)=0\Rightarrow2x-y=0\)

\(\Rightarrow2x=y\)

\(adtcdts=ntc:\)

\(\frac{y}{5}=\frac{x}{2}=\frac{y-x}{5-2}=\frac{15}{3}=5\)

Cứ thế tính x,y

Bình luận (0)