1 k m 2 = . . . . . . . . . . . . . . . . m 2 . Số thích hợp điền vào chổ chấm là:
A. 100.000.000
B. 10.000.000
C. 1.000.000
D. 100.000
Rút gọn biểu thức:
M=\(\dfrac{1}{m^2+n^2-k^2}+\dfrac{1}{n^2+k^2-m^2}+\dfrac{1}{k^2+m^2-n^2}\)
Biết m+n+k=0
Ta có: \(m+n+k=0\)
\(\Leftrightarrow m+n=-k\)
\(\Leftrightarrow\left(m+n\right)^2=\left(-k\right)^2\)
\(\Leftrightarrow m^2+2mn+n^2=k^2\)
\(\Leftrightarrow m^2+n^2-k^2=-2mn\)
Tương tự, ta có: \(n^2+k^2-m^2=-2nk\)
\(k^2+m^2-n^2=-2km\)
Thay \(m^2+n^2-k^2=-2mn;n^2+k^2-m^2=-2nk;\)\(k^2+m^2-n^2=-2km\) vào biểu thức M ta có:
M = \(\dfrac{1}{-2mn}+\dfrac{1}{-2nk}+\dfrac{1}{-2km}=\dfrac{-1}{2}\left(\dfrac{1}{mn}+\dfrac{1}{nk}+\dfrac{1}{km}\right)\)
M = \(\dfrac{-1}{2}\left(\dfrac{nk^2m+m^2nk+mn^2k}{m^2n^2k^2}\right)\)
\(M=\dfrac{-1}{2}\left(\dfrac{mnk\left(k+m+n\right)}{m^2n^2k^2}\right)\)
M = \(\dfrac{-1}{2}.\dfrac{0}{mnk}\)\(=0\)
1/ Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
2/ CMR: k( k+1 )( k+ 2 )-( k-1 )k( k+1 ) = 3.k( k+1 ) với k \(\inℕ^∗\)
3/ Cho M = 2+\(2^2+2^3+2^4+.....+2^{20}.\)Tìm chữ số tận cùng của M
c/m: 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + . . . + k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1) = k(k + 1)(k + 2)(k + 3)
ta có:1.2.3.4-1.2.3.4=0
2.3.4.5-2.3.4.5=0(2.3.4.5 ở trong dấu .....)
cứ làm như vậy tổng trên chỉ còn:k(k+1)(k+2)(k-1)
bài này dễ mà mình mới học lớp 6 thôi
Bài này là bài lớp 4 hay lớp 5 gì đó, lớp 8 đâu ra
vật khối lượng m được gắn lần lượt vào hai lò xo có độ cứng k1,k2 thì chu kì lần lượt là T1 và T2. biết T2=2T1 ,k1+k2=5 N/m. giá trị của k1,k2 lần lượt là
A. 3N/m ; 2 N/m
B. 2 N/m ; 3N/m
C. 4 N/m ; 1 N/m
D. 1N/m ; 4 N/m
C.
\(T_{1_{ }_{ }}:T_{2_{ }}=\sqrt{\dfrac{m.k_2}{k_1.m}}=\sqrt{\dfrac{k_2}{k_1}}=\dfrac{1}{2}\)
\(\dfrac{k_2}{k_1}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}k_1=4k_2\\k_1+k_2=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k_2=1\\k_1=4\end{matrix}\right.\)
Câu 1:
T1 = 2
T2 = 2
=> T1 / T2 = Căn ( k2 / k1 ) = 1 / 2
=> k2 / k1 = 1 / 4
=> k1 = 4 k2
Ta có hệ:
=>
ta chọn câu C
c/m rằng k(k+1)(k+2)-(k-1)k(k+1)=3.k(k+1)
K(k+1)(k+2)-(k-1)k(k+1)=3k(k+1)
=k(k+1)(k+2-k+1)
=k(k+1)3
=3k(k+1)(đpcm)
Mọi người giúp mình với:
Cho 2 đường thảng (d1):Y=(m-2)x+K-1(m khác 2)
(d2):y=(1-m)x+2(m khác 1)
Xác định m và k để (d1) trùng (d2)
Để (d1) trùng (d2) thì
\(\left\{{}\begin{matrix}m-2=1-m\\k-1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\k=3\end{matrix}\right.\)
Để hai đường trùng nhau thì m-2=1-m và k-1=2
hay m=3/2 và k=3
Tìm m và k để: y=(m+1)x + k - 3 và y=(3-m)x + 1 - k là 2 đường thẳng song song nhau
2 đường thẳng đã cho song song khi:
\(\left\{{}\begin{matrix}m+1=3-m\\k-3\ne1-k\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=1\\k\ne2\end{matrix}\right.\)
cho 2 đường thẳng và
biết m = 3 tìm k để 2 đường thẳng cắt nhau trên trục hoành
m=3 nên (d1): y=(k-2)x+2 và (d2): y=(6-2k)x-1
Để (d1) cắt (d2) trên trục hoành thì
\(\left\{{}\begin{matrix}6-2k< >k-2\\\dfrac{-2}{k-2}=\dfrac{1}{6-2k}=\dfrac{-1}{2k-6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3k< >-4\\2\left(2k-6\right)=k-2\end{matrix}\right.\)
=>k<>4/3 và 4k-12-k+2=0
=>k=10/3
Cắt nhau trên trục hoành `=>y=0`
Thay `y=0;m=3` vào `2` đường thẳng có hệ:
`{(0=(k-2)x+3-1),(0=(6-2k)x+5-2.3):}`
`<=>{(kx-2x=-2),(2kx-6x=-1):}`
`<=>{(2kx-4x=-4),(2kx-6x=-1):}`
`<=>{(x=-3/2),(3k. (-3/2)-4.(-3/2)=-4):}`
`<=>{(x=-3/2),(k=20/9):}`
Hai lò xo có chiều dài bằng nhau độ cứng tương ứng là k1,k2. Khi mắc vật m vào một lò xo k1, thì vật m dao đỘnG Với ChU KÌ T1=0,6s. KHI MẮc vẬT m VàO lò xO K2,thì vậT m DAO Động vớI ChU KÌ T2=0,8s. kHi MẮc VẬt m vào hệ hai lò xo k1 soNg sOng vỚI k2 thÌ chU kì daO độnG cỦa m lÀ
tìm tập hợp điểm M thỏa mãn hệ thức
2
−−→
M
A
+
k
−−→
M
B
+
(
1
−
k
)
−−→
M
C
=
→
0
, k ∈ R
Có \(\overrightarrow{MA}+k\overrightarrow{MB}+\left(1-k\right)\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)+k\left(\overrightarrow{MB}-\overrightarrow{MC}\right)=\overrightarrow{0}\) (1)
Gọi N là trung điểm của AC thì
(1) \(\Leftrightarrow2\overrightarrow{MN}+k\overrightarrow{CB}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{NM}=\dfrac{k}{2}\overrightarrow{CB}\) (2)
Vậy điểm M là điểm thỏa mãn \(\overrightarrow{NM}=\dfrac{k}{2}\overrightarrow{CB}\) với N là trung điểm AC.