Cho B= 2 2 + 1 3 - 2 - 2 3 - 1 và C = 2 3 - 5 27 + 4 12 : 3 . Chọn đáp án đúng.
A. B > C
B. B < C
C. B = C
D. B = –C
1. Cho A = (1; +∞); B = [−2; 6] . Tập hợp A ∩ B là
A. [−2; +∞)
B. (1; +∞)
C. [−2; 6]
D. (1; 6]
2. Cho A=[–4;7] và B=(-\(\infty\);–2)∪ (3;+\(\infty\)). Khi đó A∩B là:
A.[– 4; – 2) ∪ (3; 7]
B.[– 4; – 2) ∪ (3; 7)
C.(– ∞; 2] ∪ (3; +∞)
D.(−∞; −2) ∪ [3; +∞)
3. Cho ba tập hợp A = (-∞; 3), B = [−1; 8], C = (1 ; +∞). Tập (A ∩ B)\ (A ∩ C) là tập
A. [−1; 1]
B. (1 ; 3)
C. (−1; 3)
D. (−1; 1)
a,Cho B = 1/2+1/2^2+1/2^3+...+1/2^99. So sánh B với 1
b, Cho C = 1/3+(1/3)^2+(1/3)^2+(1/3)^3+...+(1/3)^99. CMR C < 1/2
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
a) cho B = 1/2 + 1/2^2 + 1/2^3 +....+1/2^99. só sánh B với 1
b) cho C = 1/3 +(1/3)^2 + (1/3)^2 + (1/3)^3 + ..... + (1/3)^99. CMR C<1/2
a,Cho B = 1/2+1/2^2+1/2^3+...+1/2^99. So sánh B với 1
b, Cho C = 1/3+(1/3)^2+(1/3)^2+(1/3)^3+...+(1/3)^99. CMR C < 1/2
ta có: 2B=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
B=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+..+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
=>2B-B=\(1-\frac{1}{2^{99}}\)
mà 1/2^99>0 nên B<1 (đpcm)
1. Cho a =2+2^2+2^3+2^4+......+2^100
CM : a chia hết cho 3 ; 15
2. CM :b=3^198+11^47 chia hết cho 10
3. Cho 1^2+2^2+3^2+4^2+.....+10^2=385
Tính : 4^2+8^2+12^2+...+40^2
12^2+14^2+16^2+18^2+20^2-(1^2+3^2+5^2+7^2+9^2)
4. CM : 70*(3^900+3^899+3^898+....+3^2+3^1+3^0)-175 chia hết cho 105
giúp mk vs mọi người ơi !!!!!!!!!!!!
cho b= 1+1^2+1^3+1^4+......+^2017 tìm tổng dãy số
cho b=2+2^2+2^3+....+2^2017. tim tổng dãy số
cho b =3+3^2+3^3+.....+2^2017 .tìm tổng dãy số
\(B=1+1^2+1^3+.......+1^{2017}\)
\(1.B=1^2+1^3+....+1^{2018}\)
\(1B-B=1^{2018}-1\)
\(B.0=1^{2018}-1\)
\(B=2+2^2+2^3+.....+2^{2017}\)
\(2B=2^2+2^4+.....+2^{2018}\)
\(2B-B=2^{2018}-2\)
\(B=\frac{2^{2018}-2}{1}\)
\(B=3+3^2+3^3+.....+3^{2017}\)
\(3B=3^2+3^3+....+3^{2018}\)
\(3B-B=2B=3^{2018}-3\)
\(B=\frac{3^{2018}-3}{2}\)
Nhớ k cho mình nhé! Thank you!!!
1)Cho a+b=1. Tính M= 2(a^3+b^3)-2(a^2+b^2)
2) cho a+b=1. Tính N= a^3+b^3+3ab(a^2+b^2)+6a^2b^2(a+b)
Ta có :
M = 2( a3 + b3 ) - 3( a2 + b2 )
= 2( a + b ) ( a2 - ab + b2 ) - 3( a2 + b2 )
= 2( a2 - ab + b2 ) - 3 ( a2 + b2 )
= 2a2 - 2ab + 2b2 - 3a2 - 3b2
= -a2 - 2ab - b2
= - ( a + b )2
= -1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)
= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1
Bài 1:
a) Cho A = 1/2 + (1/2)^2 + (1/2)^3 +...+ (1/2)^99
Chứng minh rằng: A<1
b) Cho B = 1/3 + 2/3^2 + 3/3^3 + ... + 100/3^100
Chứng minh rằng: B<3/4
\(a.A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(2A-A=1-\frac{1}{2^{99}}\)
\(A=1-\frac{1}{2^{99}}< 1\)
\(b.B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{203}{3^{100}}< 3\)
\(A< \frac{3}{4}\)
Ủng hộ mk nha ^_^
1. Cho A = (−∞; −1]; B = [1; 5] . Tập hợp A ∪ B là
A. (−∞; 5]
B. [−1; 5]
C. (−∞; −1] ∪ [1; 5]
D. \(\varnothing\)
2. Cho A = (−2; 2]; B = (−∞; 0) . Tập hợp A\B là
A. (−2; 0)
B. [2; +∞)
C. [0; 2]
D. ∅
3. Cho A = [-3; + ∞ ), B =(-2; 1]. Phần bù của B trong A là:
A. (-2; 1]
B. (-∞ ; -2]∪(1 ; +∞)
C. ∅
D. [-3 ; -2]∪(1 ; +∞)
Câu 6:C
Câu 8:C
Câu 9:Tìm phần bù của B trong A có nghĩa là tìm A\B
Ý D
Câu 6: C
Câu 8: C
Câu 9: D