Những câu hỏi liên quan
TN
Xem chi tiết
TN
Xem chi tiết
MA
Xem chi tiết
NT
3 tháng 12 2023 lúc 21:06

a: Xét ΔABH có BI là phân giác

nên \(\dfrac{AI}{AB}=\dfrac{IH}{BH}\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

Đề bài này chưa đủ dữ kiện để tính cụ thể AI/AB; AD/AB nha bạn

b: ΔBAD vuông tại A

=>\(\widehat{ABD}+\widehat{ADB}=90^0\)

=>\(\widehat{ADI}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\left(1\right)\)

ΔBIH vuông tại H

=>\(\widehat{HBI}+\widehat{BIH}=90^0\)

=>\(\widehat{BIH}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{ADI}=\widehat{BIH}\)

mà \(\widehat{AID}=\widehat{BIH}\)(hai góc đối đỉnh)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

=>AD=AI(3)

Xét ΔABH có BI là phân giác

nên \(\dfrac{IH}{BH}=\dfrac{AI}{AB}\left(4\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{DC}{BC}=\dfrac{DA}{AB}\left(5\right)\)

Từ (3),(4),(5) suy ra \(\dfrac{IH}{BH}=\dfrac{DC}{BC}\)

Bình luận (0)
H24
10 tháng 12 2023 lúc 19:18

1+1=2

Bình luận (0)
H24
22 tháng 12 2024 lúc 20:58

 

Bình luận (0)
0A
Xem chi tiết
DA
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
B1
30 tháng 7 2017 lúc 21:07

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

Bình luận (0)
H24
Xem chi tiết
PA
Xem chi tiết
DD
Xem chi tiết
NT
18 tháng 12 2020 lúc 13:44

a) Xét tứ giác AHDE có 

\(\widehat{DAE}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)

\(\widehat{ADH}=90^0\)(HD⊥AB)

\(\widehat{AEH}=90^0\)(HE⊥AC)

Do đó: AHDE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔCEH vuông tại E có EM là đường trung tuyến ứng với cạnh huyền CH(M là trung điểm của CH)

nên \(EM=\dfrac{CH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(MH=CM=\dfrac{CH}{2}\)(M là trung điểm của CH)

nên EM=MH=CM

Xét ΔEMH có ME=MH(cmt)

nen ΔEMH cân tại M(Định nghĩa tam giác cân)

\(\widehat{MEH}=\widehat{MHE}\)

Gọi O là giao điểm của AH và DE

Ta có: AEHD là hình chữ nhật(cmt)

nên hai đường chéo AH và DE cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)

mà AH cắt DE tại O

nên O là trung điểm chung của AH và DE

\(AO=OH=\dfrac{AH}{2}\) và \(EO=DO=\dfrac{ED}{2}\)

mà AH=ED(cmt)

nên AO=OH=EO=DO

Xét ΔOHE có OE=OH(cmt)

nên ΔOHE cân tại O(Định nghĩa tam giác cân)

\(\widehat{OEH}=\widehat{OHE}\)(hai góc ở đáy)

Ta có: \(\widehat{MEO}=\widehat{MEH}+\widehat{OEH}\)(tia EH nằm giữa hai tia EM,EO)

mà \(\widehat{MEH}=\widehat{MHE}\)(cmt)

và \(\widehat{OEH}=\widehat{OHE}\)(cmt)

nên \(\widehat{MEO}=\widehat{MHE}+\widehat{OHE}\)

mà \(\widehat{MHE}+\widehat{OHE}=\widehat{MHO}\)(tia HE nằm giữa hai tia HO và HM)

nên \(\widehat{MEO}=\widehat{MHO}\)

\(\Rightarrow\widehat{MED}=\widehat{CHA}\)

mà \(\widehat{CHA}=90^0\)(AH⊥BC)

nên \(\widehat{MED}=90^0\)

Xét ΔMED có \(\widehat{MED}=90^0\)(cmt)

nên ΔMED vuông tại E(Định nghĩa tam giác vuông)

c) Để DE=2EM thì AH=HC(AH=DE và HC=2EM)

Xét ΔAHC vuông tại H có AH=HC(cmt)

nên ΔAHC vuông cân tại H(Định nghĩa tam giác vuông cân)

hay \(\widehat{C}=45^0\)

Vậy: ΔABC phải có thêm điều kiện \(\widehat{C}=45^0\) thì DE=2EM

Bình luận (0)
DD
18 tháng 12 2020 lúc 13:11

mong mọi người trả lời  hộ em

 

Bình luận (0)