Chứng tỏ phương trình (x – 1)(x + 2)(3 – x) = 0 có nhiều hơn một nghiệm.
Chứng tỏ phương trình x 2 – 1 = 0 có nhiều hơn một nghiệm
Ta có: x 2 – 1 = 0 ⇔ (x – 1)(x + 1) = 0 ⇔ x = 1 hoặc x = -1.
Có hai giá trị x = -1, x = 1 đều thỏa mãn phương trình.
Vậy phương trình có nhiều hơn 1 nghiệm.
Cho phương trình: x2 – 2(2m + 1)x + 2m – 4 = 0.
a) Giải phương trình khi m = 1 và chứng tỏ tích hai nghiệm của phương trình luôn nhỏ hơn 1.
b) Có giá trị nào của m để phương trình có nghiệm kép không?
c) Gọi x1, x2 là hai nghiệm của phương trình, chứng minh rằng biểu thức: M = x1(1 – x2) + x2(1 – x1) là một hằng số.
Em yêu ơi ! Ở đây có ít người lớp 9 lắm , em lên hh sẽ có giáo viên giảng cho
em yêu ơi?????????????????
xưng hô vậy hả thằng kia
ai mà dám hỗn láo vậy
Cho 2 phương trình : \(x^2\) - 5x + 6 = 0 (1)
x + (x - 2) (2x +1)= 2 (2)
a) CMR : phương trình có nghiệm chung x = 2.
b) Chứng tỏ x = 3 là nghiệm của phương trình (1) nhưng không là nghiệm của phương trình (2).
c) 2 phương trình trên có tương đương nhau không.
Cho phương trình : \(x^2-2\left(m-1\right)x-3-m=0\) (1)
a, Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2\ge10\)
a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)
\(\Leftrightarrow4m^2-6m>=0\)
=>m<=0 hoặc m>=3/2
Cho 2 phương trình: x2 - 3x - 4 = 0 (1) và (x - 4) ( x - 2)- x= 0 (2)
a) Chứng tỏ 2 phương trình trên có nghiện chung là x=4
b) Chứng tỏ x= -1 là nghiệm của phưng trình (1) nhưng không là nghiệm của phương trình (2)
c) Hai phương trình trên có tương đương nhau không?vì sao?
Cho phương trình: x2-2(m-1)x-4m=0.Chứng tỏ phương trình có nghiệm với mọi m
Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4m\right)\)
\(=\left(-2m+2\right)^2-4\cdot\left(-4m\right)\)
\(=4m^2-8m+4+16m\)
\(=4m^2+8m+4\)
\(=\left(2m+2\right)^2\ge0\forall m\)
Vậy: Phương trình luôn có nghiệm với mọi m
Cho bất phương trình x2 > 0.
a) Chứng tỏ x = 2, x = -3 là nghiệm của bất phương trình đã cho.
b) Có phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho hay không?
a) Thay x = 2 vào bất phương trình ta được: x2 = 22 = 4 > 0
Vậy x = 2 là một nghiệm của bất phương trình x2 > 0.
Thay x = -3 vào bất phương trình ta được x2 = (-3)2 = 9 > 0
Vậy x = -3 là một nghiệm của bất phương trình x2 > 0.
b) Với x = 0 ta có x2 = 02 = 0
⇒ x = 0 không phải nghiệm của bất phương trình x2 > 0.
Vậy không phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho.
cho 2 phương trình x^2-4x+3=0(1)
5t^3-2t^2-2t-1=0
a, chứng minh 2 phương thức này có nghiệm chung là 1
b, hãy chứng tỏ rằng số 3 là nghiệm của phương trình (1) nhưng không phải là nghiệm của PT (2)
c, 2 PT đã cho có tương đương với nhau không? vì sao?
Cho phương trình: \(x^2-\left(2m+1\right)x-m-4=0\)
a, Giải phương trình khi m=1
b, Chứng tỏ rằng phương trình luôn có 2 nghiệm phân biệt
a: Khi m=1 thì phương trình sẽ là \(x^2-3x-5=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-5\right)=9+20=29\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{29}}{2}\\x_2=\dfrac{3+\sqrt{29}}{2}\end{matrix}\right.\)
b: \(\text{Δ}=\left(2m+1\right)^2-4\left(-m-4\right)\)
\(=4m^2+4m+1+4m+16\)
\(=4m^2+8m+17\)
\(=4m^2+4m+4+13\)
\(=\left(2m+2\right)^2+13>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
a, Thay m =1 ta đc
\(x^2-3x-5=0\)
\(\Delta=9-4\left(-5\right)=9+20=29>0\)
Vậy pt luôn có 2 nghiệm pb
\(x=\dfrac{3\pm\sqrt{29}}{2}\)
b, Ta có \(\Delta=\left(2m+1\right)^2-4\left(-m-4\right)=4m^2+4m+1+4m+16\)
\(=4m^2+8m+16+1=4\left(m^2+2m+4\right)+1=4\left(m+1\right)^2+13>0\)
vậy pt luôn có 2 nghiệm pb
a, Thay m=1 vào pt ta có:
\(x^2-\left(2.1+1\right)x-1-4=0\\
\Leftrightarrow x^2+3x-5=0\)
\(\Delta=3^2-4.1.\left(-5\right)=9+20=29\)
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{29}}{2}\\x_2=\dfrac{-3+\sqrt{29}}{2}\end{matrix}\right.\)
b, Ta có:
\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(-m-4\right)\\=\left(2m+1\right)^2+4\left(m+4\right)\\ =4m^2+4m+1+4m+16\\ =4m^2+8m+17\\ =4\left(m^2+2m+1\right)+13\\ =4\left(m+1\right)^2+13>0 \)
Vậy pt luôn có 2 nghiệm phân biệt