Những câu hỏi liên quan
PB
Xem chi tiết
CT
9 tháng 5 2019 lúc 5:53

Ta có:  x 2 – 1 = 0 ⇔ (x – 1)(x + 1) = 0 ⇔ x = 1 hoặc x = -1.

Có hai giá trị x = -1, x = 1 đều thỏa mãn phương trình.

Vậy phương trình có nhiều hơn 1 nghiệm.

Bình luận (0)
CT
Xem chi tiết
HD
17 tháng 5 2019 lúc 22:23

Em yêu ơi ! Ở đây có ít người lớp 9 lắm , em lên hh sẽ có giáo viên giảng cho 

Bình luận (0)
HD
17 tháng 5 2019 lúc 22:24

lên Học24h 

Bình luận (0)
CT
17 tháng 5 2019 lúc 22:25

em yêu ơi?????????????????

xưng hô vậy hả thằng kia

ai mà dám hỗn láo vậy

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 3 2021 lúc 15:01

undefined

Bình luận (0)
TP
Xem chi tiết
NT
30 tháng 3 2022 lúc 22:54

a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)

\(=4m^2-8m+4+4m+12\)

\(=4m^2-4m+16\)

\(=\left(2m-1\right)^2+15>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

b: Theo đề, ta có:

\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)

\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)

\(\Leftrightarrow4m^2-6m>=0\)

=>m<=0 hoặc m>=3/2

Bình luận (0)
PA
Xem chi tiết
PH
Xem chi tiết
NT
4 tháng 4 2021 lúc 19:54

Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4m\right)\)

\(=\left(-2m+2\right)^2-4\cdot\left(-4m\right)\)

\(=4m^2-8m+4+16m\)

\(=4m^2+8m+4\)

\(=\left(2m+2\right)^2\ge0\forall m\)

Vậy: Phương trình luôn có nghiệm với mọi m

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 11 2018 lúc 2:56

a) Thay x = 2 vào bất phương trình ta được: x2 = 22 = 4 > 0

Vậy x = 2 là một nghiệm của bất phương trình x2 > 0.

Thay x = -3 vào bất phương trình ta được x2 = (-3)2 = 9 > 0

Vậy x = -3 là một nghiệm của bất phương trình x2 > 0.

b) Với x = 0 ta có x2 = 02 = 0

⇒ x = 0 không phải nghiệm của bất phương trình x2 > 0.

Vậy không phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho.

Bình luận (0)
TA
Xem chi tiết
NQ
3 tháng 1 2023 lúc 18:13

a.67 b có ko chắc

 

 

Bình luận (0)
TP
Xem chi tiết
NT
1 tháng 3 2022 lúc 20:18

a: Khi m=1 thì phương trình sẽ là \(x^2-3x-5=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-5\right)=9+20=29\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{29}}{2}\\x_2=\dfrac{3+\sqrt{29}}{2}\end{matrix}\right.\)

b: \(\text{Δ}=\left(2m+1\right)^2-4\left(-m-4\right)\)

\(=4m^2+4m+1+4m+16\)

\(=4m^2+8m+17\)

\(=4m^2+4m+4+13\)

\(=\left(2m+2\right)^2+13>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Bình luận (0)
NT
1 tháng 3 2022 lúc 20:19

a, Thay m =1 ta đc 

\(x^2-3x-5=0\)

\(\Delta=9-4\left(-5\right)=9+20=29>0\)

Vậy pt luôn có 2 nghiệm pb 

\(x=\dfrac{3\pm\sqrt{29}}{2}\)

b, Ta có \(\Delta=\left(2m+1\right)^2-4\left(-m-4\right)=4m^2+4m+1+4m+16\)

\(=4m^2+8m+16+1=4\left(m^2+2m+4\right)+1=4\left(m+1\right)^2+13>0\)

vậy pt luôn có 2 nghiệm pb 

Bình luận (2)
N2
1 tháng 3 2022 lúc 20:20

a, Thay m=1 vào pt ta có:
\(x^2-\left(2.1+1\right)x-1-4=0\\ \Leftrightarrow x^2+3x-5=0\)

\(\Delta=3^2-4.1.\left(-5\right)=9+20=29\)

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{29}}{2}\\x_2=\dfrac{-3+\sqrt{29}}{2}\end{matrix}\right.\)

b, Ta có: 

\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(-m-4\right)\\=\left(2m+1\right)^2+4\left(m+4\right)\\ =4m^2+4m+1+4m+16\\ =4m^2+8m+17\\ =4\left(m^2+2m+1\right)+13\\ =4\left(m+1\right)^2+13>0 \)

Vậy pt luôn có 2 nghiệm phân biệt

Bình luận (0)