Những câu hỏi liên quan
H24
Xem chi tiết
NT
28 tháng 6 2023 lúc 20:30

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

Bình luận (0)
NM
Xem chi tiết
NT
27 tháng 10 2021 lúc 14:08

b: \(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Bình luận (0)
NM
27 tháng 10 2021 lúc 14:08

\(a,ĐK:x\ge0\\ PT\Leftrightarrow4\sqrt{x}-2\sqrt{x}+3\sqrt{x}=12\\ \Leftrightarrow5\sqrt{x}=12\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\\ \Leftrightarrow x=\dfrac{144}{25}\left(tm\right)\\ b,PT\Leftrightarrow\sqrt{\left(2x-3\right)^2}=7\Leftrightarrow\left|2x-3\right|=7\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=7\\3-2x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Bình luận (0)
NQ
Xem chi tiết
NT
6 tháng 3 2021 lúc 20:39

a) Ta có: \(\left|x^2-x+2\right|-3x-7=0\)

\(\Leftrightarrow\left|x^2-x+2\right|=3x+7\)

\(\Leftrightarrow x^2-x+2=3x+7\)(Vì \(x^2-x+2>0\forall x\))

\(\Leftrightarrow x^2-x+2-3x-7=0\)

\(\Leftrightarrow x^2-4x-5=0\)

\(\Leftrightarrow x^2-5x+x-5=0\)

\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy: S={5;-1}

Bình luận (1)
TL
Xem chi tiết
TM
24 tháng 4 2022 lúc 21:07

a) \(\dfrac{3}{x-7}+\dfrac{2}{x+7}=\dfrac{5}{x^2-49}\)

(ĐKXĐ: x khác 7; x khác -7)

<=>\(\dfrac{3.\left(x+7\right)}{\left(x-7\right).\left(x+7\right)}+\dfrac{2.\left(x-7\right)}{\left(x+7\right).\left(x-7\right)}=\dfrac{5}{\left(x+7\right).\left(x-7\right)}\)

=> 3x + 21 + 2x - 14 = 5

<=> 3x + 2x = 5 + 14 - 21

<=> 5x = -2

<=> x = \(\dfrac{-2}{5}\)

Vậy S = { \(\dfrac{-2}{5}\) }

Bình luận (0)
TM
24 tháng 4 2022 lúc 21:12

b) \(\dfrac{2x-1}{3}-\dfrac{x+3}{2}>1+\dfrac{5x}{6}\)

<=> \(\dfrac{2.\left(2x-1\right)}{3.2}-\dfrac{3.\left(x+3\right)}{3.2}>\dfrac{1.6}{6}+\dfrac{5x}{6}\)

=> 4x - 2 - 3x - 9 > 6 + 5x

<=> 4x - 3x - 5x > 6 + 9 + 2

<=> -4x > 17

<=> \(\dfrac{-17}{4}\)

Vậy S = { \(\dfrac{-17}{4}\) }

Bình luận (0)
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:35

a) \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \)

Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \) ta được

\(3{x^2} - 6x + 1 =  - 2{x^2} - 9x + 1\)

\( \Leftrightarrow 5{x^2} + 3x = 0\)

\( \Leftrightarrow x\left( {5x + 3} \right) = 0\)

\( \Leftrightarrow x = 0\) hoặc \(x = \frac{{ - 3}}{5}\)

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và \(x = \frac{{ - 3}}{5}\) đều thỏa mãn.

Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;\frac{{ - 3}}{5}} \right\}\)

b) \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \)

Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \) , ta được

\(2{x^2} - 3x - 5 = {x^2} - 7\)

\( \Leftrightarrow {x^2} - 3x + 2 = 0\)

\( \Leftrightarrow x = 1\) hoặc \(\)\(x = 2\)

 Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.

Vậy phương trình đã cho vô nghiệm.

Bình luận (0)
NH
Xem chi tiết
HP
11 tháng 1 2021 lúc 12:21

\(\left|3x-2\right|>7\)

\(\Leftrightarrow\left(3x-2\right)^2>49\)

\(\Leftrightarrow9x^2-12x-45>0\)

\(\Leftrightarrow\left(x-3\right)\left(3x+5\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -\dfrac{5}{3}\end{matrix}\right.\)

Bình luận (0)
AQ
Xem chi tiết
NM
5 tháng 10 2021 lúc 20:29

\(a,\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}-\dfrac{2}{y}=2\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{5}{y}=3\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{5}{3}\\\dfrac{2}{x}+\dfrac{9}{5}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=-\dfrac{5}{3}\end{matrix}\right.\)

\(b,\Leftrightarrow\left\{{}\begin{matrix}\dfrac{60}{x}-\dfrac{28}{y}=36\\\dfrac{60}{x}-\dfrac{135}{y}=525\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{9}{y}=35\\-\dfrac{163}{y}=489\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}-27=35\\y=-\dfrac{1}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{31}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

Bình luận (0)
NT
5 tháng 10 2021 lúc 20:38

a: Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}-\dfrac{2}{y}=2\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=-3\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-1}{3}\\\dfrac{1}{x}=1+\dfrac{1}{y}=1+\left(-3\right)=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Bình luận (0)
LG
Xem chi tiết
QL
Xem chi tiết
HM
26 tháng 9 2023 lúc 23:26

a) Xét tam thức \(f\left( x \right) = 7{x^2} - 19x - 6\) có \(\Delta  = 529 > 0\), có hai nghiệm phân biệt \({x_1} =  - \frac{2}{7},{x_2} = 3\) và có \(a = 7 > 0\)

Ta có bảng xét dấu như sau

 

Vậy nghiệm của bất phương trình là đoạn \(\left[ { - \frac{2}{7};3} \right]\)

b) \( - 6{x^2} + 11x > 10 \Leftrightarrow  - 6{x^2} + 11x - 10 > 0\)

Xét tam thức \(f\left( x \right) =  - 6{x^2} + 11x - 10\) có \(\Delta  =  - 119 < 0\)và có \(a =  - 6 < 0\)

Ta có bảng xét dấu như sau

 

Vậy bất phương trình vô nghiệm

c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1 \Leftrightarrow 2{x^2} - 6x + 6 > 0\)

Xét tam thức \(f\left( x \right) = 2{x^2} - 6x + 6\) có \(\Delta  =  - 12 < 0\)và có \(a = 2 > 0\)

Ta có bảng xét dấu như sau

 

Vậy bất phương trình có vô số nghiệm

d) Xét tam thức \(f\left( x \right) = {x^2} - 10x + 25\) có \(\Delta  = 0\), có nghiệm kép \({x_1} = {x_2} = 5\) và có \(a = 1 > 0\)

Ta có bảng xét dấu như sau

 

Vậy nghiệm của bất phương trình là \(x = 5\)

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 19:17

a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\)               (ĐK: \(x + 1 > 0;2 - x > 0 \Leftrightarrow  - 1 < x < 2\))

\(\begin{array}{l} \Leftrightarrow {\log _{{7^{ - 1}}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow  - {\log _7}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\log _7}{\left( {x + 1} \right)^{ - 1}} > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\left( {x + 1} \right)^{ - 1}} > 2 - x\\ \Leftrightarrow \frac{1}{{x + 1}} - 2 + x > 0\\ \Leftrightarrow \frac{{1 + \left( {x - 2} \right)\left( {x + 1} \right)}}{{x + 1}} > 0\\ \Leftrightarrow \frac{{1 + {x^2} - x - 2}}{{x + 1}} > 0 \Leftrightarrow \frac{{{x^2} - x - 1}}{{x + 1}} > 0\end{array}\)

Mà – 1 < x < 2 nên x + 1 > 0

\( \Leftrightarrow {x^2} - x - 1 > 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{1 - \sqrt 5 }}{2}\\x > \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)

KHĐK ta có \(\left[ \begin{array}{l} - 1 < x < \frac{{1 - \sqrt 5 }}{2}\\\frac{{1 + \sqrt 5 }}{2} < x < 2\end{array} \right.\)

b) \(2\log \left( {2x + 1} \right) > 3\)              (ĐK: \(2x + 1 > 0 \Leftrightarrow x > \frac{{ - 1}}{2}\))

\(\begin{array}{l} \Leftrightarrow \log \left( {2x + 1} \right) > \frac{3}{2}\\ \Leftrightarrow 2x + 1 > {10^{\frac{3}{2}}} = 10\sqrt {10} \\ \Leftrightarrow x > \frac{{10\sqrt {10}  - 1}}{2}\end{array}\)

KHĐK ta có \(x > \frac{{10\sqrt {10}  - 1}}{2}\)

Bình luận (0)