Giải phương trình sau bằng cách đặt ẩn phụ
a) x 2 − 5 x + 5 = − 2 x 2 + 10 x − 11 .
b) 3 x 2 + 3 x = x + 5 2 − x + 6 .
giải phương trình bằng cách đặt ẩn phụ
a. \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{3}{y-2}=5\\\dfrac{3}{x-2}+\dfrac{2}{y-2}=5\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}\sqrt{x-3}-2\sqrt{y-1}=2\\2\sqrt{x+3}-\sqrt{y-1}=4\end{matrix}\right.\)
\(a,ĐK:x,y\ne2\)
Đặt \(\left\{{}\begin{matrix}x-2=a\\y-2=b\end{matrix}\right.\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{3}{a}+\dfrac{2}{b}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{a}+\dfrac{9}{b}=15\\\dfrac{6}{a}+\dfrac{4}{b}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+\dfrac{3}{b}=5\\\dfrac{5}{b}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{a}+3=5\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow x=y=3\left(tm\right)\)
\(b,ĐK:x\ge3;y\ge1\)
Sửa: \(\sqrt{x-3}-\sqrt{y-1}=4\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-3}\ge0\\b=\sqrt{y-1}\ge0\end{matrix}\right.\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}a-2b=2\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3=36\\y-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=39\\y=5\end{matrix}\right.\)
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để đề bài được rõ ràng hơn.
Giải phương trình sau bằng cách đặt ẩn phụ:
\(\dfrac{x}{\sqrt{4x-1}}+\dfrac{\sqrt{4x-1}}{x}=2\)
Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)
Theo đề, ta có phương trình:
a+1/a=2
\(\Leftrightarrow a+\dfrac{1}{a}=2\)
\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)
=>a=1
=>\(x=\sqrt{4x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)
Giải các phương trình sau bằng cách đặt ẩn số phụ x - x - 1 -3 = 0
Đặt m = x - 1 .Điều kiện : m ≥ 0, x ≥ 1
Ta có : x - x - 1 -3 = 0 ⇔ (x -1) - x - 1 -2 =0
⇔ m 2 -m - 2 =0
Phương trình m 2 -m - 2 = 0 có hệ số a = 1, b = -1 , c = -2 nên có dạng
a – b + c = 0
Suy ra : m 1 = -1 (loại) , m 2 = -(-2)/1 = 2
Với m =2 ta có: x - 1 =2 ⇒ x -1 =4 ⇔ x =5
Giá trị của x thỏa mãn điều kiện bài toán
Vậy phương trình đã cho có 1 nghiệm : x=5
Giải các phương trình sau bằng cách đặt ẩn phụ:
a) (x2 -2x)2 +2(x-1)2=1
b) (x2+x+2)(x2+2x+2)=20x2
a: =>(x^2-2x+1-1)^2+2(x-1)^2=1
=>(x-1)^4-2(x-1)^2+1+2(x-1)^2=1
=>(x-1)^4=0
=>x-1=0
=>x=1
b: =>(x^2+2)^2+3x(x^2+2)+2x^2-20x^2=0
=>(x^2+2)^2+3x(x^2+2)-18x^2=0
=>(x^2+2+6x)(x^2-3x+2)=0
=>\(x\in\left\{-3\pm\sqrt{7};1;2\right\}\)
Giải hệ phương trình sau bằng cách đặt ẩn phụ: \(4|x-2|=x^2-4x+8\)
\(\Leftrightarrow4\left|x-2\right|=\left(x-2\right)^2+4\)
Đặt \(\left|x-2\right|=t\ge0\)
\(\Rightarrow4t=t^2+4\Rightarrow t^2-4t+4=0\)
\(\Rightarrow\left(t-2\right)^2=0\Rightarrow t=2\)
\(\Rightarrow\left|x-2\right|=2\Rightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Giải các phương trình sau bằng cách đặt ẩn số phụ 2 x 2 + x - 2 2 +10 x 2 +5x -16 =0
Đặt m = 2 x 2 +x -2
Ta có: 2 x 2 + x - 2 2 +10 x 2 +5x -16 =0
⇔ 2 x 2 + x - 2 2 +5(2 x 2 +x -2) -6 =0
⇔ m 2 +5m -6 =0
Phương trình m 2 +5m -6 = 0 có hệ số a = 1, b = 5, c = -6 nên có dạng
a + b + c = 0
Suy ra : m 1 =1 , m 2 =-6
m1 =1 ta có: 2 x 2 +x -2 =1 ⇔ 2 x 2 +x -3=0
Phương trình 2 x 2 +x -3 = 0 có hệ số a = 2, b = 1 , c = -3 nên có dạng
a +b+c=0
Suy ra: x 1 =1 , x 2 =-3/2
Với m=-6 ta có: 2 x 2 +x -2 = -6 ⇔ 2 x 2 +x +4 =0
∆ = 1 2 -4.2.4 = 1 -32 = -31 < 0 . Phương trình vô nghiệm
Vậy phương trình đã cho có 2 nghiệm : x 1 =1 , x 2 =-32
Giải phương trình bằng cách đặt ẩn phụ: x - x = 5 x + 7
Khi đó (1) trở thành: t2 – 6t – 7 = 0 (2)
Giải (2): Có a = 1; b = -6; c = -7
⇒ a – b + c = 0
⇒ (2) có nghiệm t1 = -1; t2 = -c/a = 7.
Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.
+ Với t = 7 ⇒ √x = 7 ⇔ x = 49 (thỏa mãn).
Vậy phương trình đã cho có nghiệm x = 49.
Bài 1: Giải hệ bằng phương pháp đặt ẩn phụ
a) \(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{15}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\)
1a) \(\left\{{}\begin{matrix}\left(x-3\right)\left(2y+5\right)=\left(2x+7\right)\left(y-1\right)\\\left(4x+1\right)\left(3y-6\right)=\left(6x-1\right)\left(2y+3\right)\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}2xy+5x-6y-15=2xy-2x+7y-7\\12xy-24x+3y-6=12xy+18x-2y-3\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}7x-13y=8\\-42x+5y=3\end{matrix}\right.\)( đến đây đơn giản rồi :)) )
Vậy ...
b) đặt a= 1/x và b = 1/y ( x,y khác 0)
ta có:
15a - 7b =9
4a + 9b = 35
=> a= 2, b = 3
thay vào ta có:
2 = 1/x => x = 1/2
3 = 1/y => y = 1/3
b) ĐKXĐ : x,y khác 0
Đặt 1/x = a ; 1/y = b ( a,b khác 0 )
hpt đã cho trở thành \(\left\{{}\begin{matrix}15a-7b=9\\4a+9b=35\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)(tm)
=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=2\\\dfrac{1}{y}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)(tm)
Vậy ...