Những câu hỏi liên quan
H24
Xem chi tiết
HM
26 tháng 8 2023 lúc 12:46

\(a,\left(\dfrac{1}{3}\right)^{2x+1}\le9\\ \Leftrightarrow2x+1\ge-2\\ \Leftrightarrow2x\ge-3\\ \Leftrightarrow x\ge-\dfrac{3}{2}\)

\(b,4^x>2^{x-2}\\ \Leftrightarrow2^{2x}>2^{x-2}\\ \Leftrightarrow2x>x-2\\ \Leftrightarrow x>-2\)

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 14:41

a, ĐK: \(x+1>0\Leftrightarrow x>-1\)

\(log_{\dfrac{1}{3}}\left(x+1\right)< 2\\ \Leftrightarrow x+1>\dfrac{1}{9}\Leftrightarrow x>-\dfrac{8}{9}\)

Kết hợp với ĐKXĐ, ta được: \(x>-\dfrac{8}{9}\)

b, ĐK: \(x+2>0\Leftrightarrow x>-2\)

\(log_5\left(x+2\right)\le1\\ \Leftrightarrow x+2\le5\\ \Leftrightarrow x\le3\)

Kết hợp với ĐKXĐ, ta được: \(-2< x\le3\)

Bình luận (0)
NH
Xem chi tiết
NC
12 tháng 1 2021 lúc 20:41

a, \(\dfrac{\left(2x-5\right)\left(x+2\right)}{4x-3}< 0\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)< 0\\4x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)>0\\4x-3< 0\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-2< x< \dfrac{5}{2}\\x>\dfrac{3}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>\dfrac{5}{2}\end{matrix}\right.\\x< \dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\dfrac{3}{4}< x< \dfrac{5}{2}\\x< -2\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là

S = \(\left(\dfrac{3}{4};\dfrac{5}{2}\right)\cup\left(-\infty;-2\right)\)

b, Pt

⇔ \(\left\{{}\begin{matrix}x^2-5x+6=x^2+6x+5\\x\in R\backslash\left\{-1;2\right\}\end{matrix}\right.\)

⇔ x = \(\dfrac{1}{11}\)

Vậy S = \(\left\{\dfrac{1}{11}\right\}\)

Bình luận (0)
TV
Xem chi tiết
QL
Xem chi tiết
HM
26 tháng 9 2023 lúc 23:19

a) Tam thức bậc hai \(f\left( x \right) = 15{x^2} + 7x - 2\) có hai nghiệm phân biệt là \({x_1} =  - \frac{2}{3};{x_2} = \frac{1}{5}\)

và có \(a = 15 > 0\) nên \(f\left( x \right) \le 0\) khi thuộc đoạn \(\left[ { - \frac{2}{3};\frac{1}{5}} \right]\)

Vậy tập nghiệm của bất phương trình \(15{x^2} + 7x - 2 \le 0\) là \(\left[ { - \frac{2}{3};\frac{1}{5}} \right]\)

b) Tam thức bậc hai \(f\left( x \right) =  - 2{x^2} + x - 3\) có \(\Delta  =  - 23 < 0\) và \(a =  - 2 < 0\)

nên \(f\left( x \right)\) âm với mọi \(x \in \mathbb{R}\)

Vậy bất phương trình \( - 2{x^2} + x - 3 < 0\) có tập nghiệm là \(\mathbb{R}\)

Bình luận (0)
HC
Xem chi tiết
NT
15 tháng 4 2022 lúc 19:45

a: =>3x+3=4x-4

=>-x=-7

hay x=7(nhận)

b: (x-1)(x-3)=0

=>x-1=0 hoặc x-3=0

=>x=1 hoặc x=3

c: 2(x-1)+x=0

=>2x-2+x=0

=>3x-2=0

hay x=2/3

Bình luận (0)
H24
15 tháng 4 2022 lúc 19:45

a, ĐKXĐ : x ≠ 1 ; x ≠ -1

\(\Rightarrow3\left(x+1\right)=4\left(x-1\right)\)

\(\Leftrightarrow3x+3=4x-4\)

\(\Leftrightarrow-x=-7\)

\(\Leftrightarrow x=7\left(N\right)\)

b,

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

c,

\(\Leftrightarrow2x-2+x=0\)

\(\Leftrightarrow3x=2\)

\(\Leftrightarrow x=\dfrac{2}{3}\)

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 19:17

a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\)               (ĐK: \(x + 1 > 0;2 - x > 0 \Leftrightarrow  - 1 < x < 2\))

\(\begin{array}{l} \Leftrightarrow {\log _{{7^{ - 1}}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow  - {\log _7}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\log _7}{\left( {x + 1} \right)^{ - 1}} > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\left( {x + 1} \right)^{ - 1}} > 2 - x\\ \Leftrightarrow \frac{1}{{x + 1}} - 2 + x > 0\\ \Leftrightarrow \frac{{1 + \left( {x - 2} \right)\left( {x + 1} \right)}}{{x + 1}} > 0\\ \Leftrightarrow \frac{{1 + {x^2} - x - 2}}{{x + 1}} > 0 \Leftrightarrow \frac{{{x^2} - x - 1}}{{x + 1}} > 0\end{array}\)

Mà – 1 < x < 2 nên x + 1 > 0

\( \Leftrightarrow {x^2} - x - 1 > 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{1 - \sqrt 5 }}{2}\\x > \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)

KHĐK ta có \(\left[ \begin{array}{l} - 1 < x < \frac{{1 - \sqrt 5 }}{2}\\\frac{{1 + \sqrt 5 }}{2} < x < 2\end{array} \right.\)

b) \(2\log \left( {2x + 1} \right) > 3\)              (ĐK: \(2x + 1 > 0 \Leftrightarrow x > \frac{{ - 1}}{2}\))

\(\begin{array}{l} \Leftrightarrow \log \left( {2x + 1} \right) > \frac{3}{2}\\ \Leftrightarrow 2x + 1 > {10^{\frac{3}{2}}} = 10\sqrt {10} \\ \Leftrightarrow x > \frac{{10\sqrt {10}  - 1}}{2}\end{array}\)

KHĐK ta có \(x > \frac{{10\sqrt {10}  - 1}}{2}\)

Bình luận (0)
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:43

a)      \(2{x^2} - 3x + 1 > 0\)

Tam thức \(f\left( x \right) = 2{x^2} - 3x + 1\) có \(a + b + c = 2 - 3 + 1 = 0\) nên hai nghiệm phân biệt \({x_1} = 1\) và \({x_2} = \frac{1}{2}.\)

Mặt khác \(a = 2 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S= \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right).\)

b)     \({x^2} + 5x + 4 < 0\)

Tam thức \(f\left( x \right) = {x^2} + 5x + 4\) có \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có hai nghiệm phân biệt \(x =  - 1\) và \(x =  - 4.\)

Mặt khác \(a = 1 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S = \left( { - 4; - 1} \right).\)

c)      \( - 3{x^2} + 12x - 12 \ge 0\)

Tam thức \(f\left( x \right) =  - 3{x^2} + 12x - 12 =  - 3\left( {{x^2} - 4x + 4} \right) =  - 3{\left( {x - 2} \right)^2} \le 0\)

Do đó 

\( - 3{x^2} + 12x - 12 \ge 0 \Leftrightarrow  - 3{x^2} + 12x - 12 = 0 \Leftrightarrow  - 3{\left( {x - 2} \right)^2} = 0 \Leftrightarrow x = 2.\)

Tập nghiệm của bất phương trình là: \(S = \left( { 2} \right).\)

d)     \(2{x^2} + 2x + 1 < 0.\)

Tam thức \(f\left( x \right) = 2{x^2} + 2x + 1\) có \(\Delta  =  - 1 < 0,\) hệ số \(a = 2 > 0\) nên \(f\left( x \right)\) luôn dướng với mọi \(x,\) tức là \(2{x^2} + 2x + 1 > 0\) với mọi \(x \in \mathbb{R}.\)

\( \Rightarrow \) bất phương trình vô nghiệm

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 23:36

a) Ta có \(a = 3 > 0\) và tam thức bậc hai \(f\left( x \right) = 3{x^2} - 2x + 4\) có \(\Delta ' = {1^2} - 3.4 =  - 11 < 0\)

=> \(f\left( x \right) = 3{x^2} - 2x + 4\) vô nghiệm.

=> \(3{x^2} - 2x + 4 > 0\forall x \in \mathbb{R}\)

b) Ta có: \(a =  - 1 < 0\) và \(\Delta ' = {3^2} - \left( { - 1} \right).\left( { - 9} \right) = 0\)

=> \(f\left( x \right) =  - {x^2} + 6x - 9\) có nghiệm duy nhất \(x = 3\).

=> \( - {x^2} + 6x - 9 < 0\forall x \in \mathbb{R}\backslash \left\{ 3 \right\}\)

Bình luận (0)
LG
Xem chi tiết