Những câu hỏi liên quan
H24
Xem chi tiết
H24
16 tháng 9 2021 lúc 18:51

Gọi STN có 4 c/s cần tìm là : \(\overline{abcd}\)  ( \(a\ne0\) ) 

Do abcd chẵn nên d \(\in\left\{0;2;4;6;8\right\}\)

Với d = 0  ; có 9 cách chọn a ; 8 cách chọn b ; 7 cách chọn c

-> có : 9.8.7.1 = 504 ( cách ) 

Với d thuôc { 2 ; 4 ;  6 ; 8 } có 4 cách chọn d 

có 8 cách chọn a ; 8 cách chọn b ;  7 cách chọn c 

-> có : 4 . 8 . 8 . 7 = 1792 cách

Có : 504 + 1792 = 2296 cách 

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 9 2018 lúc 2:18

Gọi x = a b c d  a,b,c,d ϵ {0,1,2,4,5,6,8}

Vì x là số chẵn nên d ϵ {0,,2,4,,6,8}

TH 1: d=0→ có 1 cách chọn d.

Với mỗi cách chọn d ta có 6 cách chọn a ϵ {1,2,4,5,6,8}

Với mỗi cách chọn a; d ta có 5 cách chọn b ϵ {1,2,4,5,6,8}\{a}

Với mỗi cách chọn a; b; d ta có 4 cách chọn c ϵ {1,2,4,5,6,8}\{a,b}

Suy ra trong trường hợp này có 1.6.5.4=120 số.

TH 2: d≠0→d ϵ {2,4,6,8}→ có 4 cách chọn d

Với mỗi cách chọn d, do a≠0 nên ta có 5 cách chọn

a ϵ {1,2,4,5,6,8}\{d}

Với mỗi cách chọn a, d ta có 5 cách chọn b ϵ {1,2,4,5,6,8}\{a}

Với mỗi cách chọn a; b; d ta có 4 cách chọn c ϵ {1,2,4,5,6,8}\{a,b}

Suy ra trong trường hợp này có 4.5.5.4 = 400 số.

Vậy có tất cả 120+400=520 số cần lập.

Chọn đáp án B.

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 10 2019 lúc 8:32

Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13;31;15;51;35;53

Gọi A là tập các số gồm 4 chữ số được lập từ X={0;13;2;4;6}.

Gọi A­1,A2,A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X  và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba.

Ta có:  

Nên 

Vậy số các số cần lập là: 6.60=360  số.

Chọn A.

Bình luận (0)
NC
Xem chi tiết
NT
17 tháng 5 2023 lúc 23:58

Mở ảnh

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 6 2018 lúc 16:49

Gọi   là số cần lập .

Vì x là số chẵn nên e {0; ;2; 4; 6}. Ta xét các trường hợp sau

 e = 0 ⇒ e có 1 cách chọn

Số cách chọn  là một chỉnh hợp của 6 phần tử

Số cách chọn các chữ số còn lại là   

Do đó trường hợp này có tất cả    số

 e 0 ⇒ e có 3 cách chọn

Với mỗi cách chọn e ta có a A \ {0;e} nên có 5 cách chọn a.

Số cách chọn các số còn lại là:  

Do đó trường hợp này có tất cả   số

Vậy có tất cả: 360 + 900 = 1260 số thỏa yêu cầu bài toán.

Chọn A.

Bình luận (0)
BT
Xem chi tiết
BT
Xem chi tiết
DL
11 tháng 12 2016 lúc 11:21

gọi số cần tìm là abcde, ta có:

+hàng đơn vị (e) vì là số chẵn nên có 4 cách chọn: 0;2;4;6

+ hàng chục(d) có 6 cách chọn

+ c =5; b=4; a =3

vậy có: 4.6.5.4.3 = 1440 số chẵn

( bài giống bài em thi violympic năm ngoái)

Bình luận (0)
BT
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 11 2017 lúc 11:43

Chọn B

Bước 1: ta xếp các số lẻ: có các số lẻ là 1,1,3,5 vậy có 5 ! 3 !  cách xếp.

Bước 2: ta xếp 3 số chẵn 2, 4, 6 xen kẽ 5 số lẻ trên có 6 vị trí để xếp 3 số vậy có A 6 3  cách xếp.

Vậy có  5 ! 3 ! A 6 3 = 2400 số thỏa mãn yêu cầu bài toán.

Bình luận (0)