Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0;1;2;4;5;6;8 .
A: 420
B: 460
C: 500
D: 520
Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,3,4,5,6,7,8,9.
Gọi STN có 4 c/s cần tìm là : \(\overline{abcd}\) ( \(a\ne0\) )
Do abcd chẵn nên d \(\in\left\{0;2;4;6;8\right\}\)
Với d = 0 ; có 9 cách chọn a ; 8 cách chọn b ; 7 cách chọn c
-> có : 9.8.7.1 = 504 ( cách )
Với d thuôc { 2 ; 4 ; 6 ; 8 } có 4 cách chọn d
có 8 cách chọn a ; 8 cách chọn b ; 7 cách chọn c
-> có : 4 . 8 . 8 . 7 = 1792 cách
Có : 504 + 1792 = 2296 cách
Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8.
A. 252
B. 520
C. 480
D. 368
Gọi x = a b c d a,b,c,d ϵ {0,1,2,4,5,6,8}
Vì x là số chẵn nên d ϵ {0,,2,4,,6,8}
TH 1: d=0→ có 1 cách chọn d.
Với mỗi cách chọn d ta có 6 cách chọn a ϵ {1,2,4,5,6,8}
Với mỗi cách chọn a; d ta có 5 cách chọn b ϵ {1,2,4,5,6,8}\{a}
Với mỗi cách chọn a; b; d ta có 4 cách chọn c ϵ {1,2,4,5,6,8}\{a,b}
Suy ra trong trường hợp này có 1.6.5.4=120 số.
TH 2: d≠0→d ϵ {2,4,6,8}→ có 4 cách chọn d
Với mỗi cách chọn d, do a≠0 nên ta có 5 cách chọn
a ϵ {1,2,4,5,6,8}\{d}
Với mỗi cách chọn a, d ta có 5 cách chọn b ϵ {1,2,4,5,6,8}\{a}
Với mỗi cách chọn a; b; d ta có 4 cách chọn c ϵ {1,2,4,5,6,8}\{a,b}
Suy ra trong trường hợp này có 4.5.5.4 = 400 số.
Vậy có tất cả 120+400=520 số cần lập.
Chọn đáp án B.
Từ các số của tập A={0; 1; 2; 3; 4; 5; 6} có thể lập được bao nhiêu số chẵn gồm 5 chữ số đôi một khác nhau trong đó có hai chữ số lẻ và hai chữ số lẻ đứng cạnh nhau.
A.360
B.362
C.345
D. 368
Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13;31;15;51;35;53
Gọi A là tập các số gồm 4 chữ số được lập từ X={0;13;2;4;6}.
Gọi A1,A2,A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba.
Ta có:
Nên
Vậy số các số cần lập là: 6.60=360 số.
Chọn A.
Từ các chữ số 1,2,3,4,5,6,7,8,9 hỏi lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau và trong đó có đúng 3 chữ số chẵn và 3 chữ số lẻ
Từ các chữ số của tập hợp A={0;1;2;3;4;5;6} lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau và là số chẵn.
A. 1260
B. 1234
C. 1250 a ∈ A \ {0;d}
D. 1235
Gọi là số cần lập .
Vì x là số chẵn nên e ∈ {0; ;2; 4; 6}. Ta xét các trường hợp sau
e = 0 ⇒ e có 1 cách chọn
Số cách chọn là một chỉnh hợp của 6 phần tử
Số cách chọn các chữ số còn lại là
Do đó trường hợp này có tất cả số
e ≠ 0 ⇒ e có 3 cách chọn
Với mỗi cách chọn e ta có a ∈ A \ {0;e} nên có 5 cách chọn a.
Số cách chọn các số còn lại là:
Do đó trường hợp này có tất cả số
Vậy có tất cả: 360 + 900 = 1260 số thỏa yêu cầu bài toán.
Chọn A.
Với các chữ số 0,1,2,3,4,5,6 có thể lập được bao nhiêu số chẵn gồm 5 chữ số đôi một khác nhau ( chữ số đầu tiên phải khác 0 )
Nêu rõ cách giải
Với các chữ số 0,1,2,3,4,5,6 có thể lập được bao nhiêu số chẵn gồm 5 chữ số đôi một khác nhau ( chữ số đầu tiên phải khác 0 )
Nêu rõ cách giải
gọi số cần tìm là abcde, ta có:
+hàng đơn vị (e) vì là số chẵn nên có 4 cách chọn: 0;2;4;6
+ hàng chục(d) có 6 cách chọn
+ c =5; b=4; a =3
vậy có: 4.6.5.4.3 = 1440 số chẵn
( bài giống bài em thi violympic năm ngoái)
Với các chữ số 0,1,2,3,4,5,6 có thể lập được bao nhiêu số chẵn gồm 5 chữ số đôi một khác nhau ( chữ số đầu tiên phải khác 0 )
Nêu rõ cách giải
Từ các số 1;2;3;4;5;6 lập được bao nhiêu số tự nhiên gồm tám chữ số sao cho trong mỗi số đó có đúng ba chữ số 1, các chữ số còn lại đôi một khác nhau và hai chữ số chẵn không đứng cạnh nhau?
A. 2612
B. 2400
C. 1376
D. 2530
Chọn B
Bước 1: ta xếp các số lẻ: có các số lẻ là 1,1,3,5 vậy có 5 ! 3 ! cách xếp.
Bước 2: ta xếp 3 số chẵn 2, 4, 6 xen kẽ 5 số lẻ trên có 6 vị trí để xếp 3 số vậy có A 6 3 cách xếp.
Vậy có 5 ! 3 ! A 6 3 = 2400 số thỏa mãn yêu cầu bài toán.