Cho tam giác ABC vuông tại A. Biết A B A C = 3 7 , đường cao AH = 42cm. Tính BH, HC
A. BH = 18cm; HC = 98cm
B. BH = 24cml HC = 72cm
C. BH = 20cm; HB = 78cm
D. BH = 28cm; HC = 82cm
Cho tam giác ABC vuông tại A, có BC = a, AC = b, AB = c. Giải tam giác ABC, biết:
a, a = 15 cm, b = 10 cm
b, b = 12 cm, c = 7 cm
cho tam giác ABC vuông tại A biết B=40 độ,tính C
2)cho tam giác ABC vuông tại B ,biết góc A=góc 2C,tính góc A,C
+)ΔABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(=>90^o+40^o+\widehat{C}=180^o\)
\(=>\widehat{C}=180^o-90^o-40^o=50^o\)
Vậy \(\widehat{C}=50^o\)
------------------------------------------
+)Tam giác ABC vuông tại B \(\Rightarrow\widehat{B}=90^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}+\widehat{C}=2.\widehat{C}+\widehat{C}=3.\widehat{C}\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+90^o+\widehat{C}=180^o\)
\(=>\widehat{A}+\widehat{C}=180^o-90^o\)
\(=>3.\widehat{C}=90^o\)
\(=>\widehat{C}=\dfrac{90^o}{3}=30^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}=2.30^o=60^o\)
Vậy: \(\widehat{A}=60^o\) ; \(\widehat{C}=30^o\)
1: góc C=90-40=50 độ
2: góc A=2/3*90=60 độ
góc C=90-60=30 độ
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD
1Cho tam giác ABC vuông tại A biết AH vuông góc với BC, AH = 2HC , HC= 12cm. Tính AB?
2 CHO TAM GIÁC ABC VUÔNG TẠI A BIẾT AH VUÔNG GÓC VỚI BC BIẾT DIỆN TÍCH TAM GIÁC AHC= 54CM^2 VÀ DIỆN TÍCH TAM GIÁC ABC= 96CM^2. TÍNH BC?
3, CHO TAM GIÁC ABC VUÔNG TẠI A BIẾT AH VUÔNG GÓC VỚI BC ,GỌI I, K LẦN LƯỢT LÀ HÌNH CHIẾU CỦA H TRÊN AB, AC. ĐẶT AB= c, AC = b.
a, tính AI , AK theo b, c
b, CMR : BI : CK = c^3 : b^3
Mọi người giúp em với ạ. Em cảm ơn nhiều ạ
bài 1;cho tam giác abc vuông tại b. tính độ dài ab biết ac=12cm,bc=8cm
bài 2; cho tam giác mnp vuông tại n tính độ dài mn biết mb=căn bậc 30,np=căn bâc 14
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
baif4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
baif5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Cho tam giác ABC biết, góc C= góc B/2= góc A/3
a, CMR tam giác ABC vuông tại A
b, Kẻ đường cao AH. CM góc B= góc HAC, góc C= góc BAH
a: Ta có: \(\widehat{C}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{A}}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=2\cdot\widehat{C}\\\widehat{A}=3\cdot\widehat{C}\end{matrix}\right.\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow6\cdot\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
Suy ra: \(\widehat{A}=90^0\)
Xét ΔABC có \(\widehat{A}=90^0\)
nên ΔABC vuông tại A
b: Ta có: \(\widehat{B}+\widehat{C}=90^0\)
\(\widehat{HAC}+\widehat{C}=90^0\)
Do đó: \(\widehat{B}=\widehat{HAC}\)
Ta có: \(\widehat{B}+\widehat{C}=90^0\)
\(\widehat{BAH}+\widehat{B}=90^0\)
Do đó: \(\widehat{C}=\widehat{BAH}\)
Cho tam giác ABC vuông tại A, biết cos C = căn 7/ 4. Tính sin C, sin B
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A, có BC = a, AC = b, AB = c. Giải tam giác ABC, biết:
a, b = 5,4cm, C ^ = 30 0
b, c = 10cm, C ^ = 45 0