Cho tam giác ABC vuông tại A có AB = 3 cm; AC = 4 cm, đường cao AH
b) Gọi E, F lần lượt là hình chiếu của H lên AB, AC.
Chứng minh rằng: AE. AB = AF. AC
Cho tam giác ABC có AB = 3 cm; AC = 4 cm; BC=5cm. Chứng tỏ tam giác ABC vuông tại A
Ta có : 3^2+4^2=9+16=25
Căn bậc hai của 25 bằng 5 suy ra tam giac ABC vuong tai A
ta có:
\(AB^2+AC^2=3^2+4^2=9+16=25\)
\(BC^2=5^2=25\)
=> tam giác ABC vuông tại A
Cho tam giác ABC, đường cao AM.
a) Biết tam giác ABC vuông tại A, AB : BC = 3 : 4 và diện tích tam giác ABC là 150 cm2. Tính AM.
b) Biết tam giác ABC vuông tại A, AB = 15 cm, CM = 16 cm. Tính chu vi tam giác ABC.
Cho Tam giác ABC vuông tại a có ab 8 cm, ac = 7, bc= 10 cm chứng minh Tam giác abc vuông ?
Cho Tam giác ABC vuông tại a có ab 8 cm, ac = 7, bc= 10 cm chứng minh Tam giác abc vuông
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
bài 4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
bài 5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Bài 3: Cho tam giác ABC có đường cao BH. Biết AB = 40 cm, AC = 58 cm, BC = 42 cm
a) ABC có là tam giác vuông không? vì sao?
b) Tính các tỉ số lượng giác của góc A
c) Kẻ HE vuông AB tại E, HF vuông BC tại F. Tính BH, BE, BF và diện tích EFCA
Bài 3:
Giải tam giác MNP vuông tại M có góc N = 37 độ, NP 25 cm (độ dài làm tròn đến chữ số thập phân thứ nhất, góc làm tròn đến độ
Mong bạn Phong giúp mình:((
Lưu ý: Giải chi tiết từng bước
Bài 3:
Ta có:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)
\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)
Mà: \(sinN=\dfrac{MN}{NP}\)
\(\Rightarrow sin37^o=\dfrac{MN}{25}\)
\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)
Áp dung định lý Py-ta-go ta có:
\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
3:
a: Xét ΔABC có AC^2=BA^2+BC^2
nên ΔBAC vuông tại B
b: Xét ΔBAC vuông tại B có
sin A=BC/AC=42/58=21/29
cos A=AB/AC=40/58=20/29
tan A=BC/BA=21/20
cot A=BA/BC=20/21
c: Xét ΔABC vuông tại B có BH là đường cao
nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA
=>BH*58=40*42=1680
=>BH=840/29(cm)
BA^2=AH*AC
=>AH=BA^2/AC=40^2/58=800/29cm
CB^2=CH*CA
=>CH=CB^2/CA=42^2/58=882/29(cm)
ΔBHA vuông tại H có HE là đường cao
nênBE*BA=BH^2
=>BE*40=(840/29)^2
=>BE=17640/841(cm)
ΔBHC vuông tại H có HF là đường cao
nênBF*BC=BH^2
=>BF*42=(840/29)^2
=>BF=16800/841(cm)
Xét tứ giác BEHF có
góc BEH=góc BFH=góc EBF=90 độ
=>BEHF là hình chữ nhật
=>góc BFE=góc BHE(=1/2*sđ cung BE)
=>góc BFE=góc BAC
Xét ΔBFE và ΔBAC có
góc BFE=góc BAC
góc FBE chung
Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2
=>S AECF=S ABC*(1-(420/841)^2)
=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)
Đã đăng lên cộng đồng thì phải nhờ đến tất cả chứ bạn, nếu nhờ riêng ai đó thì mời ib?
Đăng như vậy có ngày không ai giúp bạn đâu.
Cho tam giác ABC vuông tại A có AB = 3 cm AC = 4 cm , đường cao AH a, CM : tam giác ABC đồng dạng tam giác HBA từ đó suy ra ab² = BC . BH b , tính BC và BH c, Kẻ HE vuông góc AB , HF vuông góc AC Chứng minh AH . BH = BE.AC và tính độ dài BE
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Cho tam giác ABC có BC= 1cm; AC= 7cm và độ dài cạnh AB là một số nguyên (cm).Tính độ dài AB và cho biết tam giác ABC là tam giác gì?
A. AB= 7cm và tam giác ABC vuông tại A
B. AB= 7cm và tam giác ABC cân tại A
C. AB= 7cm và tam giác ABC vuông cân tại A
D. AB= 8cm và tam giác ABC vuông tại B
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Cho Δ ABC vuông tại A có cạnh AB = 3 cm;AC = 4 cm. Tính diện tích của tam giác Δ ABC ?