Những câu hỏi liên quan
NL
Xem chi tiết
NT
17 tháng 10 2021 lúc 11:16

a, Xét tam giác ABH vuông tại H, đường cao HG 

Ta có : \(NH^2=AB.BG\)( hệ thức lượng ) 

b, Xét tam giác AHC vuông tại H, đường cao HK 

Ta có : \(AH^2=AK.AC\)( hệ thức lượng ) (1) 

Xét tam giác ABC vuông tại A, đường cao AH 

Ta có : \(AH^2=HB.HC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra : \(AK.AC=HB.HC\Rightarrow\frac{AC}{HC}=\frac{HB}{AK}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
16 tháng 10 2021 lúc 14:02

giúp mk vs ạ cảm ơn

Bình luận (0)
 Khách vãng lai đã xóa
NL
17 tháng 10 2021 lúc 12:59

cảm ơn bn nhiều

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
12 tháng 2 2023 lúc 13:25

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

=>AC=20(cm)

 

Bình luận (0)
TV
Xem chi tiết
NT
30 tháng 4 2023 lúc 21:08

a: Xét ΔAKC có

AH vừa là đường cao, vừa là trung tuyến

góc C=60 độ

=>ΔAKC đều

b: ΔKAB có góc KAB=góc KBA=30 độ

nên ΔKAB cân tạiK

=>KA=KB=KC

=>K là trung điểm của BC

Bình luận (0)
LM
Xem chi tiết
OY
8 tháng 8 2021 lúc 15:19

 

Bình luận (0)
NC
Xem chi tiết
PB
Xem chi tiết
CT
18 tháng 6 2017 lúc 8:05

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NT
3 tháng 7 2021 lúc 0:09

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(BD\cdot BA=BH^2\)

\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(CE\cdot CA=CH^2\)

\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)

Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)

Bình luận (0)
NA
Xem chi tiết
NT
12 tháng 7 2023 lúc 20:20

a: ΔABC vuông tại A có AM là trung tuyến

nên MA=MC=MB

=>góc MAC=góc MCA=góc BAH

b: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc EAM+góc AED

=góc AHD+góc MCA

=góc ABC+góc MCA=90 độ

=>AM vuông góc ED

Bình luận (0)