Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HK ⊥ AB (K ∈ AB). Chứng minh rằng:
a) AB. AK = HB. HC
Cho tam giác ABC vuông tại A , AB=3cm,AC= 4cm , đường cao AH .Kẻ HK vuông góc với AC tại K , kẻ HG vuông góc với AB tại G .
a, Chứng minh BH2= AB * BG
b, Chứng minh AC/HC=HB/AK
a, Xét tam giác ABH vuông tại H, đường cao HG
Ta có : \(NH^2=AB.BG\)( hệ thức lượng )
b, Xét tam giác AHC vuông tại H, đường cao HK
Ta có : \(AH^2=AK.AC\)( hệ thức lượng ) (1)
Xét tam giác ABC vuông tại A, đường cao AH
Ta có : \(AH^2=HB.HC\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(AK.AC=HB.HC\Rightarrow\frac{AC}{HC}=\frac{HB}{AK}\)
giúp mk vs ạ cảm ơn
cảm ơn bn nhiều
Cho tam giác ABC vuông tại A, đường cao AH, HB=9cm; HC=16cm. a) chứng minh : AB^2 = HB.BC b) Tính AB; AC; AH c) Phân giác của góc B cắt AH tại I, từ I kẻ đường thẳng song song với BC cắt AC tại K. Chứng minh AK/KC = AB/HC d) Gọi E là giao điểm của BI với AC chứng minh tam giác KIE đồng dạng với tam giác ABI
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)
Cho tam giác ABC vuông tại A có góc B bằng 30 độ. Kẻ đường cao AH của tam giác ABC. Trên đoạn HB lấy K sao cho HC=HK.
a) Chứng minh tam giác AKC đều
b) Chứng minh K là trung điểm của BC
c) Qua K kẻ đường thẳng song song với AB cắt AH và AC theo thứ tự tại G và I. Chứng minh CG đi qua trung điểm của AK
a: Xét ΔAKC có
AH vừa là đường cao, vừa là trung tuyến
góc C=60 độ
=>ΔAKC đều
b: ΔKAB có góc KAB=góc KBA=30 độ
nên ΔKAB cân tạiK
=>KA=KB=KC
=>K là trung điểm của BC
cho tam giác abc vuông tại a kẻ đường cao ah lấy điểm k thuộc doạn thẳng hc qua k kẻ đường thắngong song với ab cắt ah tại d chứng minh ak vuông góc cd
Cho tam giác ABC vuông tại A , có AB=4cm AC = 6cm kẻ đường cao AH từ H kẻ HE vuông góc với AB tại E từ H kẻ HK vuông góc với AC tại F. Gọi I và K lần lượt là trung điểm của HB và HC lấy điểm M trên đoạn FC sao ch FA=FM
a, chứng minh rằng AH=EF
b, Tứ giác EHMF là hình gì vì sao
c Tính DIỆN TÍCH TỨ GIÁC EIKF
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Lấy điểm K thuộc đoạn thẳng HC. Qua K kẻ đường thẳng song song với AB, cắt AH tại D. Chứng minh A K ⊥ C D .
Cho tam giác ABC vuông tại A ( AB<AC, đường cao AH), kẻ HM vuông góc AB, HN vuông góc AC.
a) Chứng minh: tứ giác AMHN là hình chữ nhật.
b) Gọi I là trung điểm HC, K đối xứng A qua I. Chứng minh: AC//HK.
c) Chứng minh: tứ giác NCKM là hình thang cân.
d) MN cắt AH tại O, CO cắt AK tại D. Chứng minh: AK = 3 lần
Cho tam giác ABC vuông tại A, đường cao AH. Gọi HD, HE lần lượt là đường cao của tam giác AHB và tam giác AHC. Chứng minh rằng:
a,\(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
b,\(\frac{AB^3}{AC^3}=\frac{BD}{EC}\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(BD\cdot BA=BH^2\)
\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(CE\cdot CA=CH^2\)
\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)
Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)
Cho tam giác ABC có A = 90 độ , kẻ đường cao AH và trung tuyến AM kẻ HD vuông góc AB , HE vuông góc AC
biết HB = 4,5cm; HC=8cm.
a) Chứng minh BAH = MAC
b) Chứng minh AM vuông góc DE tại K
c) Tính độ dài AK
a: ΔABC vuông tại A có AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA=góc BAH
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
góc EAM+góc AED
=góc AHD+góc MCA
=góc ABC+góc MCA=90 độ
=>AM vuông góc ED