Những câu hỏi liên quan
H24
Xem chi tiết
NL
1 tháng 4 2021 lúc 16:33

b.

\(\dfrac{x-1}{2x-1}-1\ge0\Leftrightarrow\dfrac{-x}{2x-1}\ge0\) \(\Rightarrow0\le x< \dfrac{1}{2}\)

c.

\(\dfrac{2}{x-6}-\dfrac{1}{x-8}>0\Leftrightarrow\dfrac{2\left(x-8\right)-\left(x-6\right)}{\left(x-6\right)\left(x-8\right)}>0\)

\(\Leftrightarrow\dfrac{x-10}{\left(x-6\right)\left(x-8\right)}>0\Rightarrow\left[{}\begin{matrix}6< x< 8\\x>10\end{matrix}\right.\)

Bình luận (0)
SY
Xem chi tiết
NT
19 tháng 2 2022 lúc 11:28

b, bạn xem lại đề 

c, đk : x khác 1 ; 3 

\(\Rightarrow x^2-8x+15+2x-2=x^2-4x+3\Leftrightarrow-2x=-10\Leftrightarrow x=5\left(tm\right)\)

d, đk: x khác -3 ; x khác 1 

\(\Rightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)

\(\Leftrightarrow2x^2+3x-5+x^2+2x-3=4+3x^2+8x-3\)

\(\Leftrightarrow-3x=5\Leftrightarrow x=-\dfrac{5}{3}\left(tm\right)\)

Bình luận (0)
TM
Xem chi tiết
H24
4 tháng 4 2023 lúc 20:35

\(b,5x+2\left(x-7\right)=35\\ \Leftrightarrow5x+2x-14-35=0\\ \Leftrightarrow7x-49=0\\ \Leftrightarrow7x=49\\ \Leftrightarrow x=7\\ d,đk:x\ne2;x\ne0\\ \dfrac{x+2}{x-2}-\dfrac{1}{x}-\dfrac{2}{x^2-2x}=0\\ \Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{1}{x}-\dfrac{2}{x\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+2\right)-\left(x-2\right)-2}{x\left(x-2\right)}=0\\ \Leftrightarrow x^2+2x-x+2-2=0\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\left(kot/m\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)

Bình luận (0)
NV
4 tháng 4 2023 lúc 21:17

\(5x+2\left(x-7\right)=35\)

\(\Leftrightarrow5x+2x-14=35\)

\(\Leftrightarrow7x-14=35\)

\(\Leftrightarrow7x=49\)

\(\Leftrightarrow x=7\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{7\right\}\)

\(\dfrac{x+2}{x-2}-\dfrac{1}{x}-\dfrac{2}{x^2-2x}=0\)   \(\text{ĐKXĐ:}x\ne0;x\ne2\)

\(\Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{1}{x}-\dfrac{2}{x\left(x-2\right)}=0\)

\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=0\)

\(\Rightarrow x^2+2x-x+2-2=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(\text{loại}\right)\\x=-1\left(\text{nhận}\right)\end{matrix}\right.\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{-1\right\}\)

 

Bình luận (0)
HL
Xem chi tiết
NT
19 tháng 3 2022 lúc 14:18

b, \(\left(2x-3\right)\left(x+1-x-5\right)=0\Leftrightarrow x=\dfrac{3}{2}\)

c, \(x^2-4x+1=2x-22\Leftrightarrow x^2-6x+23=0\Leftrightarrow\left(x-3\right)^2+14=0\left(voli\right)\)

pt vô nghiệm 

d, \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1=\dfrac{205-x}{95}+1\)

\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}=\dfrac{300-x}{95}\)

\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}-\dfrac{1}{95}\ne0\right)=0\Leftrightarrow x=300\)

Bình luận (0)
H24
Xem chi tiết
H24
8 tháng 12 2021 lúc 19:18

1/ \(x=3\) 

2/ \(x=3\) hoặc \(x=1\)

Bình luận (0)
LN
Xem chi tiết
NH
26 tháng 5 2021 lúc 17:06

1)  \(3x-2x+6=6\Leftrightarrow x=0\)

2) \(4\left(2x-1\right)-12x-12=3\left(x+2\right)\)

\(\Leftrightarrow8x-4-12x-12-3x-6=0\)

\(\Leftrightarrow7x=-22\Leftrightarrow x=\dfrac{-22}{7}\)

Bình luận (0)
TB
26 tháng 5 2021 lúc 17:28

3, \(\left(x-1\right)2=9\left(x+1\right)2\)

\(\Leftrightarrow2x-2\)    \(=18x+18\)

\(\Leftrightarrow2x-18x=18+2\)

\(\Leftrightarrow-16x\)       \(=20\)

\(\Leftrightarrow x\)             \(=\dfrac{-5}{4}\)      

                   Vậy pt đã cho có tập nghiệm là S= \(\left\{\dfrac{-5}{4}\right\}\)

4, \(\dfrac{x-4}{x-1}+\dfrac{x+4}{x+1}=2\) ( ĐKXĐ : \(x\ne\pm1\) )

\(\Leftrightarrow\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow x^2-3x-4+x^2+3x-4=2x^2-2\)

\(\Leftrightarrow2x^2-8-2x^2+2=0\)

\(\Leftrightarrow0\)                           \(=6\)  ( Vô lí )

                        Vậy pt đã cho vô nghiệm

 

Bình luận (0)
NA
Xem chi tiết
MY
16 tháng 2 2022 lúc 20:14

\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)

\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)

\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)

\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)

\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)
DL
16 tháng 2 2022 lúc 20:08

3.15:

a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)

 

b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

 

3.16

\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)

\(\Leftrightarrow-14m+35-2m^2+8=0\)

\(\Leftrightarrow-14m-2m^2+43=0\)

\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)

\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)

\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)

\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)

pt vô nghiệm

Bình luận (0)
NT
Xem chi tiết
LH
23 tháng 6 2021 lúc 12:58

a) Áp dụng bđt AM-GM có:

\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)

\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)

Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)

Vậy...

b)Đk:\(x\ge2\)

Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)

Do \(x\ge2\Rightarrow x-1>0\)

Chia cả hai vế của pt cho x-1 ta được:

\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy S={2}

c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)

Thay x=3 vào pt thấy thỏa mãn

Vậy S={3}

Bình luận (1)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 23:41

a) Bình phương hai vế ta được

\(2{x^2} - 3x - 1 = 2x - 3\)

\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)

b) Bình phương hai vế ta được

\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

c) \(\sqrt {x + 9}  = 2x - 3\)(*)

Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)

Bình phương hai vế của (*) ta được:

\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)

d) \(\sqrt { - {x^2} + 4x - 2}  = 2 - x\)(**)

Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)

Bình phương hai vế của (**) ta được:

\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

Bình luận (0)
LG
Xem chi tiết
AH
24 tháng 8 2021 lúc 18:13

a. ĐKXĐ: $x\geq 2$ hoặc $x=1$

PT $\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}$

$\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)

b.

PT $\Leftrightarrow \sqrt{(x-2)^2}=\sqrt{(2x-3)^2}$

$\Leftrightarrow |x-2|=|2x-3|$

\(\Leftrightarrow \left[\begin{matrix} x-2=2x-3\\ x-2=3-2x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\)

Bình luận (0)
AH
24 tháng 8 2021 lúc 18:14

c. ĐKXĐ: $x=2$ hoặc $x\geq 3$

PT $\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}(\sqrt{x-3}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x-3}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=4\end{matrix}\right.\) (đều tm)

d.

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Leftrightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

Bình luận (0)
NT
25 tháng 8 2021 lúc 0:01

a: Ta có: \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)

\(\Leftrightarrow x^2-3x+2=x-1\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

b: Ta có: \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)

\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x-2\\2x-3=-x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)

c: Ta có: \(\sqrt{x^2-5x+6}=\sqrt{x-2}\)

\(\Leftrightarrow x^2-5x+6=x-2\)

\(\Leftrightarrow x^2-6x+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Bình luận (0)