Những câu hỏi liên quan
PB
Xem chi tiết
CT
31 tháng 1 2019 lúc 4:14

Chọn A.

Đặt 

 

Bình luận (0)
ND
Xem chi tiết
RH
1 tháng 9 2021 lúc 8:44

Chắc dùng Mincowski

Bình luận (0)
NT
Xem chi tiết
LL
19 tháng 6 2017 lúc 23:39

có: \(x\left(2x-3\right)^2\ge0\Leftrightarrow4x^3-12x^2+9x\ge0\Leftrightarrow4x^3-12x^2+12x-4\ge3x-4\)

\(\Leftrightarrow4\left(x-1\right)^3\ge3x-4\)

\(\Leftrightarrow\left(1-x\right)^3\le1-\frac{3}{4}x\).

tương tự và cộng lại ta có ngay đpcm.

Dấu = xảy ra khi 2 số bằng 1,5; 1 số bằng 0

Bình luận (0)
LM
Xem chi tiết
LT
2 tháng 6 2018 lúc 17:45

Chị tham khảo bài giải dưới đây nhé:

x^3/(3y+1) +(3y+1)/16+1/4 \(\ge\)3 . căn bậc 3\(\sqrt[]{\frac{x^3.\left(3y+1\right).1}{\left(3y+1\right).16.4}}\)\(\ge\)3x/4(BĐT cauchy) (1)

y^3/(3z+1)+(3z+1)/16+1/4 \(\ge\)3. căn bậc 3\(\sqrt[]{\frac{z^3.\left(3z+1\right).1}{\left(3z+1\right).16.4}}\)\(\ge\)3y/4 (BĐT cauchy) (2)

z^3/(3x+1) +(3x+1)/16 +1/4 \(\ge\) 3. \(\sqrt[3]{\frac{z^3.\left(3x+1\right).1}{\left(3y+1\right).16.4}}\)\(\ge\)3z/4(BĐT cauchy) (3)

cộng theo vế của các bất đảng thức (1),(2),(3) ta có BĐT tương đương 

   P+3(x+y+z)/16+3/16 \(\ge\)3(x+y+z)/4

\(\Leftrightarrow\)P+3/16\(\ge\)3(x+y+z)/4 -3(x+y+z)/16=9(x+y+z)/16\(\ge\)9/16

\(\Rightarrow\)P+3/16\(\ge\)9/16

\(\Leftrightarrow\)P\(\ge\)3/16

vậy min P=3/16 . Dấu  "=" xảy ra khi và chỉ khi x=y=z=1

Chị Linh Mai ơi em không học lớp 9 nhưng bài này có thể em biết làm . Và bài giải trên chỉ mang tính tham khảo thôi nha chị , chưa chắc đúng đâu . Chị cần tham khỏa các bài khác coi đúng không nhé! Em chúc chị mai thi tuyển sinh làm bài tốt nha!

Bình luận (0)
FC
28 tháng 5 2020 lúc 21:19

bạn kia giải sai rồi

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết
TS
Xem chi tiết
MH
27 tháng 3 2023 lúc 13:25

+) \(P=\sqrt{7x+9}+\sqrt{7y+9}+\sqrt{7z+9}\)

\(P^2\le3\left(7x+7y+7z+27\right)=102\)
\(P\le\sqrt{102}\)

\(MaxP=102\Leftrightarrow x=y=z=\dfrac{1}{3}\)

+) \(x,y,z\in[0;1]\)\(\Rightarrow\left\{{}\begin{matrix}x\ge x^2\\y\ge y^2\\z\ge z^2\end{matrix}\right.\)

\(P\ge\sqrt{x^2+6x+9}+\sqrt{y^2+6y+9}+\sqrt{z^2+6z+9}\)

\(=x+y+z+9=10\)

\(MinP=10\Leftrightarrow\left(x;y;z\right)=\left(0;0;1\right)\text{và các hoán vị}\)

Bình luận (0)
NH
Xem chi tiết
NL
5 tháng 8 2021 lúc 14:01

\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)

\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)

\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)

Bình luận (0)
NL
Xem chi tiết
TH
14 tháng 1 2021 lúc 18:32

Bất đẳng thức cần chứng minh tương đương:

\(y+2\ge\left(2-x\right)\left(2-z\right)\left(2-y\right)\).

Theo bất đẳng thức AM - GM: \(\left(2-x\right)\left(2-z\right)\le\dfrac{\left(4-x-z\right)^2}{4}=\dfrac{\left(2-y\right)^2}{4}\).

Do đó ta chỉ cần chứng minh:

\(y+2\ge\dfrac{\left(2-y\right)^3}{4}\).

Mặt khác, bđt trên tương đương: \(\dfrac{y\left[\left(y-3\right)^2+7\right]}{4}\ge0\) (luôn đúng).

Do đó bđt ban đầu cũng đúng.

Đẳng thức xảy ra khi y = 0; x = z = 1.

 

 

Bình luận (0)
H24
Xem chi tiết
NL
5 tháng 11 2021 lúc 16:11

\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)

\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)

\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

Bình luận (0)