Những câu hỏi liên quan
NA
Xem chi tiết
NL
30 tháng 7 2021 lúc 22:51

1. \(y'=3x^2\sqrt{x}+\dfrac{x^3-5}{2\sqrt{x}}=\dfrac{7x^3-5}{2\sqrt{x}}\)

2. \(y'=3x^5+\dfrac{3}{x^2}+\dfrac{1}{\sqrt{x}}\)

3. \(y'=2-\dfrac{2}{\left(x-2\right)^2}\)

Bình luận (0)
AD
Xem chi tiết
NT
2 tháng 1 2022 lúc 8:21

Các hàm số a,b,e là các hàm số bậc nhất

Bình luận (1)
NV
Xem chi tiết
NQ
Xem chi tiết
NL
22 tháng 12 2022 lúc 23:57

\(y=\dfrac{1}{2}\left(x^2-1\right)\) không phải hàm số bậc nhất

Bình luận (0)
KK
Xem chi tiết
PB
Xem chi tiết
CT
17 tháng 8 2017 lúc 3:36

Chọn A

f ' ( x )  đổi dấu khi x chạy qua -1 và 3 nên hàm số có 2 điểm cực trị.

Bình luận (0)
AN
Xem chi tiết
NL
22 tháng 6 2021 lúc 7:16

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

Bình luận (0)
TB
Xem chi tiết
NM
23 tháng 11 2021 lúc 7:22

\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)

Hs bậc nhất là a,b,d,e

\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)

Bình luận (0)
MH
Xem chi tiết
NT
19 tháng 10 2021 lúc 0:27

a: Đây là hàm số bậc nhất

a=2; b=-3

b: Đây là hàm số bậc nhất

a=-6; b=-7

c: Đây ko là hàm số bậc nhất

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 8 2018 lúc 8:31

Ta có 

Bảng biến thiên của hàm số y= g( x)

Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng ( 3: + ∞)  hàm số nghịch biến trong khoảng (-∞; -3) .

Hàm số có 3 cực trị, hàm số đạt giá trị nhỏ nhất tại x= ±3

Vậy có 3 khẳng định đúng là khẳng định I, II, IV

Chọn C.

Bình luận (0)