Cho các số thực a,b,c,d thỏa mãn 2 a . 5 b = 2 c . 5 d . Phát biểu nào sau đây là đúng?
A. a = c
B. a = c và b = d
C. b = d
D. a - c ln 2 = d - b ln 5
Cho a,b,c là các số thực thỏa mãn abc>=1.cmr:
(a^5-a^2)/(a^5+b^2+c^2) +(b^5-b^2)/ (b^5+c^2+a^2) +(c^5-c^2)/(c^5+a^2+b^2)>=0
BĐT cần chứng minh tương đương với
\(\left(1-\frac{a^5-a^2}{a^5+b^2+c^2}\right)+\left(1-\frac{b^5-b^2}{b^5+c^2+a^2}\right)+\left(1-\frac{c^5-c^2}{c^5+a^2+b^2}\right)\le3\)
hay \(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)
Từ \(abc\ge1\) ta có:
\(\frac{1}{a^5+b^2+c^2}\le\frac{1}{\frac{a^5}{abc}+b^2+c^2}=\frac{1}{\frac{a^4}{bc}+b^2+c^2}\)
\(\le\frac{1}{\frac{2a^4}{b^2+c^2}+b^2+c^2}=\frac{b^2+c^2}{2a^4+\left(b^2+c^2\right)^2}\)
Do \(4u^2+v^2\ge4uv\Leftrightarrow4u^2+v^2\ge\frac{2}{3}\left(u+v\right)^2\)nên
\(2a^4+\left(b^2+c^2\right)^2\ge\frac{2}{3}\left(a^2+b^2+c^2\right)^2\)
Suy ra \(\frac{1}{a^5+b^2+c^2}\le\frac{3\left(b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)
Tương tự ta có \(\frac{1}{b^5+c^2+a^2}\le\frac{3\left(c^2+a^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)
và \(\frac{1}{c^5+a^2+b^2}\le\frac{3\left(a^2+b^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)
Cộng ba vế của các BĐT trên ta được
\(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)
Vậy \(\frac{a^5-a^2}{a^5+b^2+c^2}+\frac{b^5-b^2}{b^5+c^2+a^2}+\frac{c^5-c^2}{c^5+a^2+b^2}\ge0\)
(Dấu "="\(\Leftrightarrow a=b=c=1\))
a, Cho 3 số thực a, b, c thỏa mãn a+b+c=0. CMR a5+b5+c5=5/2abc(a2+b2+c2)
b, Tìm số thực x thỏa mãn (3x-2)5+(5-x)5+(-2x-3)5=0
b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0
Đặt a=3x-2; b=-2x-3
Pt sẽ trở thành:
a^5+b^5-(a+b)^5=0
=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0
=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0
=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0
=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0
=>-5ab(a+b)(a^2-ab+b^2+2ab)=0
=>-5ab(a+b)(a^2+b^2+ab)=0
=>ab(a+b)=0
=>(3x-2)(-2x-3)(5-x)=0
=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)
Cho các số thực a,b,c thỏa mãn a+b+c=0. \(CMR:\frac{a^5+b^5+c^5}{5}=\frac{a^2+b^2+c^2}{2}.\frac{a^3+b^3+c^3}{3}\)
Ta có \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-2ab-2bc-2ca\right)\)
Mà a+b+c=0 nên \(a^3+b^3+c^3=3abc\)
Ta có \(\frac{a^2+b^2+c^2}{2}.\frac{a^3+b^3+c^3}{3}=\frac{(a^2+b^2+c^2)3abc}{6}=\frac{(a^2+b^2+c^2)abc}{2}\)(1)
Ta có \(\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)=\left(a^2+b^2+c^2\right)3abc\)(2)
Bạn nhân vế trái của (2) ra rồi nhóm lại thì đc nhứ sau
\(=>2\left(a^5+b^5+c^5\right)-2abc\left(a^2+b^2+c^2\right)=\left(a^2+b^2+c^2\right)3abc\)
\(=>2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
\(=>\frac{a^5+b^5+c^5}{5}=\frac{abc(a^2+b^2+c^2)}{2}\)(3)
Từ (1)và (3)=> đpcm
Học tốt nha bạn !
1) Cho 2 số x, y thỏa mãn x-2y=5; x^2+4y^2=29 Tính giá trị của A=x^3-8y^3
2) Cho các số thực a, b, c thỏa mãn a+b+c=0 Chứng minh rằng a^4+b^4+c^4=1/2(a^2+b^2+c^2)^2
1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy) (vì x-2y=5 và x^2+4y^2=29) (1)
Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)
=> xy=1 (2)
Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155
Vậy gt của bt A là 155
2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab
=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)
=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)
=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)
Cho 3 số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=3\). Chứng minh rằng: \(a^5+b^5+c^5\ge3\)
\(\)\(=>a^5+b^5+c^5-3\ge0\)
\(< =>a^5+b^5+c^5-\left(a^3+b^3+c^3\right)\ge0\)
\(>=>a^2.a^3-a^3+b^2.b^3-b^3+c^2.c^3-c^3\ge0\)
\(< =>a^2\left(a^3-1\right)+b^2\left(b^3-1\right)+c^2\left(c^3-1\right)\ge0\)(luôn đúng)
vì \(a^2\left(a^3-1\right)\ge0;b^2\left(b^3-1\right)\ge0;c^2\left(c^3-1\right)\ge0\)
Vậy \(Vt\ge3\)(đpcm)
\(\)
\(\)
Theo mình thì lời giải của bạn dưới là sai ở chỗ đánh giá \(a^2(a^3-1)\geq0\)
Đây là lời giải của mình nhé !!
Áp dụng bất đẳng thức Cosi ta có :
\(a^5+a^5+1+1+1\geq 5\sqrt[5]{a^5.a^5.1.1.1}=5a^2\)
Tương tự với b,c suy ra
\(2(a^5+b^5+c^5) + 9 \geq 5(a^2+b^2+c^2)=15 \\ \Rightarrow a^5+b^5+c^5\geq 3\)
Dấu = xảy ra khi a = b = c = 1
Cho a;b;c;d là các số nguyên tố > 2 thỏa mãn a^5+b^5+c^5+d^5 chia hết cho 40.Chứng minh a+b+c+d chia hết cho 40
Cho a,b,c,d là các số thực dương thỏa mãn a+b=c+d và a^2+b^2=c^2+d^2.Tính a^2021 + b^2021 = c^2021+d^2021
Cho các số thực a,b,c thay đổi thỏa mãn : a + b + c = 5 và a^2 + b^2 + c^2 = 9 . Chứng minh rằng a > 1
\(\text{ Nếu: a}< 1\text{ thì: }b+c=5-a;b^2+c^2=\left(3-a\right)\left(3+a\right)\)
\(\text{ta có:}9-a^2\ge\left(25-10a+a^2\right):2\Leftrightarrow18-2a^2\ge25-10a+a^2\)
\(\Leftrightarrow10a-7-3a^2\ge0\Leftrightarrow-3a^2+3a+7a-7=-3a\left(a-1\right)+7\left(a-1\right)=\left(7-3a\right)\left(a-1\right)\ge0\)
do đó: a >=1
Cho các số thực \(a,b,c,d\) thỏa mãn \(a^2+b^2=25;c^2+d^2=16;ac+bd\ge20.\)Tìm Max:
\(a+d\)
Bài toán:
a) Cho các số thực dương a,b,c thỏa mãn a+b+2c=6. Tìm GTNN của A= a^2+ b^2+ c^2 + 1/a^2+b^2+c^2
b) Cho các số thực dương a,b,c thỏa mãn Biết rằng 1 bé hơn hoặc bằng a;b;c bé hơn hoặc bằng 2 và a+b+c=5
tìm GTLN, GTNN của B=a^3+b^3+c^3
Giúp mình giải bài này với!!!!!!!!!!!!!!!!