NA
Bài 1: Cho (O;R) và một điểm M. Hãy chỉ dùng thước thẳng dựng đường thẳng đi qua M và vuông góc với đường kính AB cho trước (đường kính AB không đi qua M).Bài 2: Cho (O;R) và (O’;R’) cùng trực giao với đường tròn (C;r). Chứng minh trục đẳng phương của hai đường tròn (O;R) và (O’;R’) đi qua điểm C.Bài 3: Cho A không thuộc (O;R). O’ di động trên (O;R), đường thằng a là trục đẳng phương của hai đường tròn (O;R) và (O’;O’A). Chứng minh khoảng cách từ A đến đường thẳng a là không đổi.Bài 4: Cho góc x...
Đọc tiếp

Những câu hỏi liên quan
DH
Xem chi tiết
LH
Xem chi tiết
EY
2 tháng 7 2018 lúc 9:20

lên toán mẫu

Bình luận (0)
BN
Xem chi tiết
H24
Xem chi tiết
H24
14 tháng 8 2021 lúc 10:41

giup minh bai 1 gap voi ah!!

Bình luận (0)
AH
Xem chi tiết
NT
2 tháng 7 2023 lúc 10:24

Câu 3:

a: Độ dài cung nhỏ AB là:

\(\dfrac{2\cdot pi\cdot R\cdot120}{360}=\dfrac{pi\cdot R\cdot2}{3}\)

Độ dài cung nhỏ BC là;

\(\dfrac{2\cdot pi\cdot R\cdot120}{360}=pi\cdot R\cdot\dfrac{2}{3}\)

b: \(S=\dfrac{pi\cdot R^2\cdot120}{360}=pi\cdot R^2\cdot\dfrac{1}{3}\)

c: Diện tích hình quạt tròn OAC là:

\(S_q=\dfrac{pi\cdot R^2\cdot120}{360}=pi\cdot\dfrac{R^2}{3}\)

Diện tích tam giác OAC là:

\(S=\dfrac{1}{2}\cdot OA\cdot OC\cdot sin120=\dfrac{1}{4}\cdot R^2\)

Diện tích hình viên phân OAC là;

\(S_q-S=R^2\left(\dfrac{pi}{3}-\dfrac{1}{4}\right)\)

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
NL
27 tháng 7 2021 lúc 18:01

Kẻ đường cao AH ứng với BC

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AH=AC.sinC\)

\(cosC=\dfrac{CH}{AC}\Rightarrow CH=AC.cosC\)

Trong tam giác vuông ABH:

\(tanB=\dfrac{AH}{BH}\Rightarrow BH=\dfrac{AH}{tanB}=\dfrac{AC.sinC}{tanB}\)

Do đó:

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH\left(BH+CH\right)=\dfrac{1}{2}.4,5.sin55^0.\left(\dfrac{4,5.sin55^0}{tan60^0}+4,5.cos55^0\right)\approx8,68\left(cm^2\right)\)

Bình luận (0)
NL
27 tháng 7 2021 lúc 18:02

undefined

Bình luận (0)
ND
Xem chi tiết
NH
Xem chi tiết