Những câu hỏi liên quan
NK
Xem chi tiết
BA
Xem chi tiết
AT
Xem chi tiết
VH
19 tháng 7 2023 lúc 19:24

\(1)A=2x\left(x-y\right)-y\left(y-2x\right)\)

\(=2x^2-2xy-y^2+2xy\)

\(=2x^2-y^2=2.\left(-\dfrac{2}{3}\right)^2-\left(-\dfrac{1}{3}\right)^2\)

\(=\dfrac{8}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

\(2)B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(=5x^2-20xy-4y^2+20xy\)

\(=5x^2-4y^2=5.\left(-\dfrac{1}{5}\right)^2-4.\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

\(3)C=\text{x.(x^2-y^2)-x^2(x+y)+y(x^2-x)}\)

\(=x^3-xy^2-x^3-x^2y+x^2y-xy\)

\(=-xy\left(x+1\right)\)

Bình luận (0)
VH
19 tháng 7 2023 lúc 20:32

\(=\dfrac{1}{2}.100\left(100+1\right)=50.101=5050\)

Bình luận (0)
VH
19 tháng 7 2023 lúc 20:33

cái đoạn\(-xy\left(x+1\right)\)đổi x+1 thành y+1 nha mik đánh nhầm

Bình luận (0)
TN
Xem chi tiết
NT
4 tháng 12 2016 lúc 20:33

Giải:

a) Đặt \(\frac{x}{10}=\frac{y}{6}=k\)

\(\Rightarrow x=10k,y=6k\)

\(xy=60\)

\(\Rightarrow10k6k=60\)

\(\Rightarrow60k^2=60\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

+) \(k=1\Rightarrow x=10;y=6\)

+) \(k=-1\Rightarrow x=-10;y=-6\)

Vậy cặp số \(\left(x;y\right)\)\(\left(10;6\right);\left(-10;-6\right)\)

b) Hình như đề sai !!!

c) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

+) \(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)

+) \(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)

( x, y cùng dấu )

Vậy cặp số ( x; y ) là ( 6; 8 ) ; ( -6; -8 )
 

Bình luận (2)
H24
4 tháng 12 2016 lúc 21:08

b) $$\dfrac{x-1}2 = \dfrac{y-2}3 = \dfrac{z-3}3$$

$$\iff \dfrac{x-1}2 = \dfrac{2y-4}{6} = \dfrac{3z - 9}9$$

Áp dụng tính chất dãy tỉ số bằng nhau

$$\dfrac{x-1}2 = \dfrac{2y-4}{6} = \dfrac{3z - 9}9 = \dfrac{(x-1) - (2y-4) + (3z - 9)}{2 - 6 + 9} = \dfrac{(x - 2y + 3z) - 6}5 = \dfrac{16 - 6}5 = 2$$

+) $\dfrac{x-1}2 = 2 \iff x = 5$

+) $\dfrac{2y-4}6 = 2 \iff y = 8$

+) $\dfrac{3z-9}9 = 2 \iff z = 9$

Bình luận (1)
KM
Xem chi tiết
KT
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
NL
21 tháng 9 2020 lúc 23:24

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-2xy\left(x+y\right)=32\\x^2y^2\left[\left(x+y\right)^2-2xy\right]=128\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)

\(\Rightarrow\left\{{}\begin{matrix}a\left(a^2-2b\right)=32\\b^2\left(a^2-2b\right)=128\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^3-2ab=32\\\frac{b^2}{a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3-2ab=32\\a=\frac{b^2}{4}\end{matrix}\right.\)

\(\Rightarrow\frac{b^6}{64}-\frac{b^3}{2}=32\)

\(\Leftrightarrow\frac{1}{64}b^6-\frac{1}{2}b^3-32=0\Rightarrow\left[{}\begin{matrix}b^3=64\\b^3=-32\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=4\Rightarrow a=4\\b=-2\sqrt[3]{4}\Rightarrow a=2\sqrt[3]{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=4\\xy=4\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=2\sqrt[3]{2}\\xy=-2\sqrt[3]{4}\end{matrix}\right.\end{matrix}\right.\) theo Viet đảo x và y là nghiệm:

\(\left[{}\begin{matrix}t^2-4t+4=0\\t^2-2\sqrt[3]{2}t-2\sqrt[3]{4}=0\end{matrix}\right.\) \(\Rightarrow t=...\)

Bình luận (0)
TT
Xem chi tiết
NN
11 tháng 7 2019 lúc 8:09

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

Bình luận (0)
HS
11 tháng 7 2019 lúc 16:41

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

Bình luận (0)
HS
11 tháng 7 2019 lúc 16:43

d, \(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

Vậy : \(\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)

Bình luận (0)