Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NT
Xem chi tiết
ZT
Xem chi tiết
ND
15 tháng 7 2018 lúc 12:42

Áp dụng BĐT sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) 

\(\Rightarrow\frac{1}{2a+b+c}\le\frac{1}{4}\left(\frac{1}{2a}+\frac{1}{b+c}\right)\). Lại có \(\frac{1}{b+c}\le\frac{1}{4b}+\frac{1}{4c}\)

\(\Rightarrow\frac{1}{2a+b+c}\le\frac{1}{4}\left(\frac{1}{2a}+\frac{1}{4b}+\frac{1}{4c}\right)\)

Tương tự: \(\frac{1}{a+2b+c}\le\frac{1}{4}\left(\frac{1}{4a}+\frac{1}{2b}+\frac{1}{4c}\right);\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{4a}+\frac{1}{4b}+\frac{1}{2c}\right)\)

Cộng 3 BĐT trên theo vế, ta được:

\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Thay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\)\(\Rightarrow\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)(đpcm).

Dấu "=" xảy ra <=> \(a=b=c=\frac{3}{4}.\)

Bình luận (0)
NC
Xem chi tiết
CM
15 tháng 11 2020 lúc 17:20

1)

\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)

Dấu "=" xảy ra khi a=2

Bình luận (0)
 Khách vãng lai đã xóa
CM
15 tháng 11 2020 lúc 17:27

2)

\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa
CM
15 tháng 11 2020 lúc 17:30

2)

Sửa lại:\(\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4b\left(1-4b\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\)

Mình đánh máy nhầm

Bình luận (0)
 Khách vãng lai đã xóa
CD
Xem chi tiết
AR
Xem chi tiết
DA
Xem chi tiết
DD
28 tháng 4 2019 lúc 9:13

Từ \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :

\(\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\left(a+a+b+b+c\right)\ge\left(1+1+1+1+1\right)^2\)

\(\Rightarrow\frac{2}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{25}{2a+2b+c}\)

Tương tự ta có :

\(\frac{2}{b}+\frac{2}{c}+\frac{1}{a}\ge\frac{25}{2b+2c+a}\)

\(\frac{2}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{25}{2a+b+2c}\)

Cộng từng vế BĐT ta thu được :

\(\frac{5}{a}+\frac{5}{b}+\frac{5}{c}\ge25P\)

\(\Leftrightarrow P\le\frac{5\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{25}=1\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=\frac{3}{5}\)

Bình luận (0)
ND
Xem chi tiết
CM
2 tháng 12 2020 lúc 22:25

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
GL
28 tháng 2 2020 lúc 16:39

Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)

Thật vậy:

\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)

Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)

\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)

mà \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)

Áp dụng các bđt trên vào bài toán ta có

 ∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)\(\frac{a+b+c}{a+b+c}=1\)

Bất đẳng thức được chứng minh

Dấu "=" xảy ra khi a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
NC
28 tháng 2 2020 lúc 16:58

Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm

Bình luận (0)
 Khách vãng lai đã xóa
GL
28 tháng 2 2020 lúc 17:04

chứng minh bđt "Lại có" ạ

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
H24
13 tháng 2 2020 lúc 18:04

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm

Đẳng thức xảy ra khi \(a=b=c\)

b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Cách làm tương tự câu a.

c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)

d) Em làm biếng quá anh làm nốt đi:P

Bình luận (0)
 Khách vãng lai đã xóa
DD
14 tháng 2 2020 lúc 12:55

Câu d : \(p=\frac{a+b+c}{2}\Rightarrow2p=a+b+c\)

Ta có : \(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự : \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

\(\Leftrightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\left(đpcm\right)\)

Dấu \("="\) xảy ra khi nó là tam giác đều

Bình luận (0)
 Khách vãng lai đã xóa