Những câu hỏi liên quan
LN
Xem chi tiết
NM
22 tháng 11 2021 lúc 14:57

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
NH
1 tháng 1 2020 lúc 23:04

Áp dụng BĐT Bunhiacopxki ta có :

\(\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)\)

\(\Leftrightarrow\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le100\)

\(\Leftrightarrow f\left(x\right)\le10\)

Dấu "=" xảy ra :

\(\Leftrightarrow\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\)

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NA
Xem chi tiết
NT
3 tháng 12 2023 lúc 20:41

a: \(f\left(x\right)=2x^2-7x+9\)

=>\(f'\left(x\right)=2\cdot2x-7=4x-7\)

Đặt f'(x)=0

=>\(4x-7=0\)

=>\(x=\dfrac{7}{4}\)

\(f\left(\dfrac{7}{4}\right)=2\cdot\left(\dfrac{7}{4}\right)^2-7\cdot\dfrac{7}{4}+9=\dfrac{23}{8}\)

\(f\left(-1\right)=2\left(-1\right)^2-7\cdot\left(-1\right)+9=18\)

\(f\left(4\right)=2\cdot4^2-7\cdot4+9=13\)

Vì \(f\left(\dfrac{7}{4}\right)< f\left(4\right)< f\left(-1\right)\)

nên \(f\left(x\right)_{max\left[-1;4\right]}=18;f\left(x\right)_{min\left[-1;4\right]}=\dfrac{23}{8}\)

b: \(f\left(x\right)=x^2+5x+3\)

=>\(f'\left(x\right)=2x+5\)

f'(x)=0

=>2x+5=0

=>2x=-5

=>\(x=-\dfrac{5}{2}\)

\(f\left(-\dfrac{5}{2}\right)=\left(-\dfrac{5}{2}\right)^2+5\cdot\dfrac{-5}{2}+3=\dfrac{25}{4}-\dfrac{25}{2}+3=-\dfrac{13}{4}\)

\(f\left(2\right)=2^2+5\cdot2+3=4+10+3=17\)

\(f\left(6\right)=6^2+5\cdot6+3=69\)

Vậy: \(f\left(x\right)_{max\left[2;6\right]}=69;f\left(x\right)_{min\left[2;6\right]}=-\dfrac{13}{4}\)

Bình luận (0)
DF
Xem chi tiết
TH
2 tháng 1 2021 lúc 17:30

Áp dụng bất đẳng thức AM - GM:

\(\sqrt{\left(x^2-15\right)\left(x-3\right)}\le\dfrac{x^2-15+x-3}{2}=\dfrac{x^2+x-18}{2};\sqrt{x^2-15}\le\dfrac{x^2-15+1}{2}=\dfrac{x^2-14}{2};\sqrt{x-3}\le\dfrac{x-3+1}{2}=\dfrac{x-2}{2}\).

Do đó \(F\ge x^2+x-\dfrac{x^2+x-18}{2}-\dfrac{x^2-14}{2}-\dfrac{x-2}{2}-38=-21\).

Đẳng thức xảy ra khi x = 4.

Vậy...

Bình luận (0)
DT
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết
PK
Xem chi tiết
BK
3 tháng 3 2017 lúc 22:21

\(F\)=5 ; \(I\)=91

Bình luận (0)
HP
7 tháng 3 2017 lúc 15:01

đặt |3x-5|= y ,ĐK : y >/ 0 

F=y2-6y+10 đến đây đơn giản

ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)

Bình luận (0)