Những câu hỏi liên quan
CD
Xem chi tiết
NT
3 tháng 10 2020 lúc 6:13

Gọi O là tâm bình hành

\(\overrightarrow{MA}+2\overrightarrow{MB}+2\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{0}\Leftrightarrow6\overrightarrow{MO}+\overrightarrow{OA}+2\overrightarrow{OB}+2\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)

Dễ dàng nhìn ra trong hình bình hành ABCD tâm O thì: \(\hept{\begin{cases}\overrightarrow{OA}+\overrightarrow{OD}=-\frac{1}{2}\overrightarrow{AB}\\\overrightarrow{OB}+\overrightarrow{OD}=\frac{1}{2}\overrightarrow{AB}\end{cases}}\)--->thế lên trên:

\(\Rightarrow6\overrightarrow{MO}-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AB}=\overrightarrow{0}\Leftrightarrow\overrightarrow{OM}=\frac{1}{12}\overrightarrow{AB}\)---> Dễ dàng có được M là điểm cố định (Vì các điểm O,A,B đều cố định)

Vậy điểm M được xác định bằng cách lấy đường thẳng qua O song song AB rồi trong nửa mặt phẳng bờ là BD có chứa điểm C ta lấy điểm M thuộc đường thẳng vừa dựng được sao cho đoạn OM có độ dài đúng bằng 1/12 độ dài AB.

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 10 2020 lúc 7:57

Gọi O là giao điểm hai đoạn thẳng AC và BD.

Dựng điểm M như sau:

Trên nửa mặt phẳng bờ AC phía B, vẽ tia Ot song song AB.

Trên tia này, Bạn lấy điểm M cách O một đoạn bằng MỘT PHẦN SÁU AB.

Đó là điểm cần tìm.

 
  

 
  
 
 

 
 

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
Xem chi tiết
NT
17 tháng 10 2021 lúc 22:42

\(\overrightarrow{CD}+\overrightarrow{CB}=\overrightarrow{CD}+\overrightarrow{DA}=\overrightarrow{CA}\)

Bình luận (0)
NN
Xem chi tiết
HH
Xem chi tiết
PH
30 tháng 12 2020 lúc 14:00

Câu 1: giả sử:\(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\Leftrightarrow\overrightarrow{BA}+\overrightarrow{AD}-\overrightarrow{BA}=\overrightarrow{OC}+\overrightarrow{BO}\)

\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)(luôn đúng vì ABCD lad hình bình hành)

giả sử: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BC}-\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{BB}+\overrightarrow{DD}=\overrightarrow{0}\)(LUÔN ĐÚNG)

câu 2 :GIẢ SỬ:

 \(\overrightarrow{AB}+\overrightarrow{OA}=\overrightarrow{OB}\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{0}\)(luôn đúng)

giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\\ \Leftrightarrow\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\)

Bình luận (0)
DH
Xem chi tiết
CQ
23 tháng 9 2020 lúc 20:01

\(MA+MB+MC=4MD\) 

\(MA+MC=4MD-MB\) 

\(MO+OA+MO+OC=4MO+4OD-MO-OB\) 

\(2MO=3MO+4OD+4OB-5OB\) 

\(0=MO-5OB\) 

\(5OB=MO\) 

Tới đây vẽ nha 

Bình luận (0)
 Khách vãng lai đã xóa
QL
Xem chi tiết
HM
25 tháng 9 2023 lúc 21:19

a) Áp dụng tính chất trọng tâm ta có: \(\overrightarrow {MA}  + \overrightarrow {MD}  + \overrightarrow {MB}  = \overrightarrow 0 \)

Suy ra M là trọng tâm của tam giác ADB

Vậy nằm trên đoạn thẳng AO sao cho \(AM = \frac{2}{3}AO\)

b) Tiếp tục áp dụng tính chất trọng tâm \(\overrightarrow {ND}  + \overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)

Suy ra N là trọng tâm của tam giác BCD

Vậy nằm trên đoạn thẳng OD sao cho \(ON = \frac{1}{3}OD\)

c) Áp dụng tính chất trung điểm ta có: \(\overrightarrow {PM}  + \overrightarrow {PN}  = \overrightarrow 0 \)

Suy ra là trung điểm của đoạn thẳng MN

Vậy điểm trùng với điểm O.

Bình luận (0)
KS
Xem chi tiết
DQ
4 tháng 10 2020 lúc 13:39

bẹn tự vẽ hình nhé! Gọi I và J lần lượt là trung điểm của AD và BC.

Theo giả thiết: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{O}a\)

\(\Leftrightarrow2\left(\overrightarrow{OI}+\overrightarrow{OJ}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\)O,I, J thẳng hàng.(1)

\(\Delta OAD\)cân tại \(O\Rightarrow OI\perp AB\)(2)

\(\Delta OBC\)cân tại \(O\Rightarrow OJ\perp BC\)(3)

Từ 1,2,3 => AD//BC

Tương tự ta chứng minh được AB//CD

Vậy tứ giáo ABCD nội tiếp được trong đường tròn, nên tứ giác ABCD là hình chữ nhật. (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
KS
4 tháng 10 2020 lúc 16:28

Thanks Đặng Ngọc Quỳnh 

P/s:trc chỗ (2) hình như là OI vuông góc với AD mới đúng :P

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết