Tìm giá trị lớn nhất
A= \(\sqrt{ }\)-x
B= √1-9x2 -6x -5
tìm giá trị lớn nhất
a)2x-x2-4
b) -x2 - 4x
c)-9x2+24x -18
d) 4x-x2-1
\(a,=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\)
Dấu \("="\Leftrightarrow x=1\)
\(b,=-\left(x^2+4x+4\right)+4=-\left(x+2\right)^2+4\le4\)
Dấu \("="\Leftrightarrow x=-2\)
\(c,=-\left(9x^2-24x+16\right)-2=-\left(3x-4\right)^2-2\le-2\)
Dấu \("="\Leftrightarrow x=\dfrac{4}{3}\)
\(d,=-\left(x^2-4x+4\right)+3=-\left(x-2\right)^2+3\le3\)
Dấu \("="\Leftrightarrow x=2\)
tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau
a) 25x2-20x+7
b)9x2-6x+2
c)-x2+2x-2
d)x2+12x+39
e)-x2-12x
f)4x-x2+1
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
d) Ta có: \(x^2+12x+39\)
\(=x^2+12x+36+3\)
\(=\left(x+6\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-6
e) Ta có: \(-x^2-12x\)
\(=-\left(x^2+12x+36-36\right)\)
\(=-\left(x+6\right)^2+36\le36\forall x\)
Dấu '=' xảy ra khi x=-6
f) Ta có: \(4x-x^2+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau
a) 25x2-20x+7
b)9x2-6x+2
c)-x2+2x-2
d)x2+12x+39
e)-x2-12x
f)4x-x2+1
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=1
( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )
a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)
\(=\left(5x-2\right)^2+3\)
Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)
Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)
b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)
Vậy Min = 1 <=> x = 1/3
c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)
Vậy Max = -1 <=> x = 1
d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)
Vậy Min = 3 <=> x = - 6
e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)
Vậy Max = 36 <=> x = -6 .
f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)
Vậy Max = 5 <=> x = 2
Tìm giá trị nhỏ nhất và giá trị lớn nhất
a, A = y - 2x + 5 với 36x2 + 16y2 = 9
b, B = 2x - y - 2 với \(\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)
Lời giải:
a)
Áp dụng BĐT Bunhiacopxky:
\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)
\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)
Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$
b)
Áp dụng BĐT Bunhiacopxky:
\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)
\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)
Vậy $B_{min}=-7; B_{\max}=3$
Tìm điều kiện của x để giá trị của biểu thức được xác định:
a) 3 x 3 ( x − 1 ) ( x 2 + 2 ) ; b) − 4 x 2 25 − 20 x + 4 x 2 ;
c) x 2 − 9 x 2 − 6 x + 9 2 x ; d) x 2 − 9 x 2 + 6 x + 9 x − 3 .
Tìm số tự nhiên a để biểu thức sau có giá trị lớn nhất
A= 2020 + 240: ( a-5)
A lớn nhất khi a-5=1
=>a=6
Nếu ta muốn tìm được giá trị lớn nhất của biểu thức \(A=2020+240:\left(a-5\right)\)thì phép tính trong ngoặc của vế \(240:\left(a-5\right)\) phải có giá trị bé nhất có thể nhưng phải khác \(0\) :
Ta gọi:
\(a\) là số bị trừ
\(5\) là số trừ
\(x\) là hiệu
\(x\) tìm được phải nhỏ nhất nhưng khác \(0\)
Nên:Gía trị nhỏ nhất của \(x\) là \(=1\)
Ta phải tìm số bị trừ nào \(-5=1\) mà muốn tìm số bị trừ ta lấy hiệu \(+\) số trừ
Ta có:\(1+5=6\)
Từ đó suy ra:
\(=>a=6\)
Lời giải:
Để $A$ lớn nhất thì $a-5$ phải là số tự nhiên khác 0 nhỏ nhất
$\Rightarrow a-5=1$
$\Rightarrow a=6$
tìm giá trị lớn nhất
A=12x-3x^2
=-3x^2+12x-12+12
=-3(x^2-4x+4)+12
==-3(x-2)^2+12<=12
Dấu = xảy ra khi x=2
Cho biểu thức: 2(1-9x2)/3x2+6x : 2-6x/3x
a, Rút gọn M.
b, Tìm các giá trị nguyên của x để M có giá trị nguyên.
c.tìm các giá trị nguyên của x =2 ,x=1
các bạn giúp vơi mình đang thi
a: \(M=\dfrac{2\left(1-3x\right)\left(1+3x\right)}{3x\left(x+2\right)}\cdot\dfrac{3x}{2\left(1-3x\right)}=\dfrac{3x+1}{x+2}\)
tìm số nguyên x để phân số A = 2023/x+5 với x không thuộc -5 có giá trị lớn nhất
A. -6
B. -4
C. -2022
D. 2018
tìm giá trị lớn nhất
A=3-x2+4x
mk cần gấp ạ!!!
\(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\le7\)
\(A_{max}=7\Leftrightarrow x=2\)