\(cho\dfrac{a}{b}và\dfrac{c}{d}\) bằng nhau.C/M\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Cho dãy tỉ số bằng nhau \(\dfrac{a}{a+b+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\) Tính giá trị của biểu thức M=\(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}-\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
cho dãy tỉ số bằng nhau\(\dfrac{2a+b+c+d}{a}\) =\(\dfrac{a+2b+c+d}{b}\) =\(\dfrac{a+b+2c+d}{c}\)=\(\dfrac{a+b+c+2d}{d}\)
tính giá trị của biểu thức M= \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
Ta có:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)
\(=\dfrac{a+b+c+2d}{d}-1\)
⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
Nếu a+b+c+d=0
⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)
Thay vào M, ta có:
\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)
Nếu a+b+c+d ≠0
⇒ \(a=b=c=d\)
Thay vào M, ta có
\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)
\(\text{Cùng trừ mỗi tỉ số trên 1 đơn vị ta được:}\)
\(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\) \(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
\(\text{Từ đây ta suy ra 2 trường hợp:}\)
\(\text{Trường hợp 1:}\)
\(\text{Nếu }a+b+c+d\notin0\Rightarrow a=b=c=d\)
\(\Rightarrow M=1+1+1+1=1.4=4\)
\(\text{Trường hợp 2:}\)
\(\text{Nếu }a+b+c+d=0\text{ thì:}\)
\(a+b=-\left(c+d\right);b+c=-\left(d+a\right)\)
\(c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)
\(\text{Do đó }M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Cho dãy tỉ bằng nhau:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
Tính \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Ta có:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)
\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
+) Nếu \(a+b+c+d\ne0\) thì từ trên suy ra:\(a=b=c=d\)
\(\Rightarrow M=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)
+) Nếu \(a+b+c+d=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)
\(\Rightarrow M=\dfrac{-\left(c+d\right)}{c+d}+\dfrac{-\left(d+a\right)}{d+a}+\dfrac{-\left(a+b\right)}{a+b}+\dfrac{-\left(b+c\right)}{b+c}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=\left(-4\right)\)
Vậy M = 4 hoặc M = -4
Cho dãy tỉ số bằng nhau :
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}\)
Tìm giá trị của biểu thức
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
Giải:
Ta có:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c+d}=\dfrac{1}{3}\\\dfrac{b}{a+c+d}=\dfrac{1}{3}\\\dfrac{c}{a+b+d}=\dfrac{1}{3}\\\dfrac{d}{b+c+a}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=b+c+d\\3b=a+c+d\\3c=a+b+d\\3d=b+c+a\end{matrix}\right.\Leftrightarrow a=b=c=d\)
\(\Leftrightarrow M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
\(\Leftrightarrow M=1+1+1+1=4\)
Vậy \(M=4\).
Chúc bạn học tốt!
Ta có
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)
\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
Trường hợp thứ nhất \(a+b+c+d\ne0\Rightarrow a=b=c=d\)
\(\Rightarrow M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
\(\Rightarrow M=1+1+1+1\)
\(\Rightarrow M=4\)
Trường hợp thứ hai\(a+b+c+d=0\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)
\(\Rightarrow M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
\(\Rightarrow M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(\Rightarrow M=-4\)
Vậy \(M\in\left\{4;-4\right\}\)
cho dãy tỉ số bằng nhau:\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
tìm giá trị biểu thức:
M = \(\dfrac{a+b}{c +d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Cho dãy tỉ số bằng nhau: \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
Tìm giá trị của biểu thức: \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}=\dfrac{2a+b+c+d-a-2b-c-d}{a-b}=1\)
\(\Rightarrow\left\{{}\begin{matrix}-a=b+c+d\\-b=a+c+d\\-c=b+c+d\\-d=a+b+c\end{matrix}\right.\Rightarrow a=b=c=d\)
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)
\(\Rightarrow M=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}\)
\(\Rightarrow M=1+1+1+1\)
\(\Rightarrow M=4\)
Vậy .......
Chúc bạn học tốt!
Bạn làm thiếu rồi.Mình bổ sung nè
Bạn tự ghi điều kiện nha
Xét a+b+c+d=0
\(\Rightarrow\)\(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)
Khi đó M=-1+(-1)+(-1)+(-1)
=-4
Cho dãy tỉ số bằng nhau:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
Tính : \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu \(a+b+c+d\ne0\Rightarrow a=b=c=d\)
\(\Rightarrow M=1+1+1+1=4\)
Nếu a + b + c + d = 0 => a + b = -(c + d) ; (b + c) = -(a + d) ; c + d = -(a+b) ; d + a = -(b + c)
\(\Rightarrow M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy M = 4 hoặc M = -4
Cho dãy tỉ số bằng nhau \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}\)
Tính giá trị của biểu thức \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
ta có \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)
=> \(\left(\dfrac{a}{b+c+d}+1\right)=\left(\dfrac{b}{a+c+d}+1\right)=\left(\dfrac{c}{a+b+d}+1\right)=\left(\dfrac{d}{a+b+c}+1\right)\)
(=) \(\dfrac{a+b+c+d}{b+c+d}=\dfrac{a+b+c+d}{a+c+d}=\dfrac{a+b+c+d}{a+b+d}=\dfrac{a+b+c+d}{a+b+c}\)
*Nếu a+b+c+d=0
=> \(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{matrix}\right.\)
=> M=(-1)+(-1)+(-1)+(-1)=(-4)
Nếu a+b+c+d\(\ne\)0
=> a=b=c=d
=> M=1+1+1+1=4
Xét a+b+c+d=0
\(\Rightarrow\)a=-(b+c+d).Thay vào \(\dfrac{a}{b+c+d}\)ta có
\(\dfrac{-\left(b+c+d\right)}{b+c+d}\)=-1.Làm tương tự như thế ta có
M=-1+(-1)+(-1)+(-1)=-4
Xét a+b+c+d\(\ne\)0
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b+c+d}\)=\(\dfrac{b}{a+c+d}\)=\(\dfrac{c}{a+b+d}\)=\(\dfrac{d}{b+c+a}\)
=\(\dfrac{a+b+c+d}{2\cdot\left(a+b+c+d\right)}\)=\(\dfrac{1}{2}\)
Vì\(\dfrac{a}{b+c+d}\)=\(\dfrac{1}{2}\)
\(\Rightarrow\)2a=b+c+d
\(\Rightarrow\)3a=a+b+c+d\(\left(1\right)\)
Vì\(\dfrac{b}{a+c+d}\)=\(\dfrac{1}{2}\)
\(\Rightarrow\)2b= a+c+d
\(\Rightarrow\)3b=a+b+c+d\(\left(2\right)\)
Vì\(\dfrac{c}{a+b+d}\)=\(\dfrac{1}{2}\)
\(\Rightarrow\)2c=a+b+d
\(\Rightarrow\)3c=a+b+c+d\(\left(3\right)\)
Vì\(\dfrac{d}{b+c+a}\)=\(\dfrac{1}{2}\)
\(\Rightarrow\)2d=b+c+a
\(\Rightarrow\)3d=a+b+c+d\(\left(4\right)\)
Từ\(\left(1\right)\),\(\left(2\right)\),\(\left(3\right)\),\(\left(4\right)\)
\(\Rightarrow\)3a=3b=3c=3d
\(\Rightarrow\)a=b=c=d.Khi đó
M=\(\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}\)
=1+1+1+1
=4
Vậy...
Mình trình bày hơi xấu các bạn thông cảm1!
Cho dãy tỉ số bằng nhau:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
Tính : \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)