Violympic toán 7

YA

Cho dãy tỉ số bằng nhau: \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

Tìm giá trị của biểu thức: \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)

HD
5 tháng 10 2017 lúc 9:56

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}=\dfrac{2a+b+c+d-a-2b-c-d}{a-b}=1\)

\(\Rightarrow\left\{{}\begin{matrix}-a=b+c+d\\-b=a+c+d\\-c=b+c+d\\-d=a+b+c\end{matrix}\right.\Rightarrow a=b=c=d\)

\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)

\(\Rightarrow M=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}\)

\(\Rightarrow M=1+1+1+1\)

\(\Rightarrow M=4\)

Vậy .......

Chúc bạn học tốt!

Bình luận (2)
NT
20 tháng 11 2018 lúc 19:29

Bạn làm thiếu rồi.Mình bổ sung nè

Bạn tự ghi điều kiện nha

Xét a+b+c+d=0

\(\Rightarrow\)\(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)

Khi đó M=-1+(-1)+(-1)+(-1)

=-4

Bình luận (1)

Các câu hỏi tương tự
KN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TK
Xem chi tiết
LA
Xem chi tiết
PH
Xem chi tiết
NS
Xem chi tiết