Bài 8: Tính chất của dãy tỉ số bằng nhau

TL

Cho dãy tỉ số bằng nhau :

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}\)

Tìm giá trị của biểu thức

\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)

JV
18 tháng 10 2017 lúc 16:34

Giải:

Ta có:

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c+d}=\dfrac{1}{3}\\\dfrac{b}{a+c+d}=\dfrac{1}{3}\\\dfrac{c}{a+b+d}=\dfrac{1}{3}\\\dfrac{d}{b+c+a}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=b+c+d\\3b=a+c+d\\3c=a+b+d\\3d=b+c+a\end{matrix}\right.\Leftrightarrow a=b=c=d\)

\(\Leftrightarrow M=\dfrac{a+b}{c+d}+\dfrac{b+c}{a+d}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)

\(\Leftrightarrow M=1+1+1+1=4\)

Vậy \(M=4\).

Chúc bạn học tốt!

Bình luận (6)
HL
28 tháng 11 2017 lúc 21:39

Ta có

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)

\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

Trường hợp thứ nhất \(a+b+c+d\ne0\Rightarrow a=b=c=d\)

\(\Rightarrow M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)

\(\Rightarrow M=1+1+1+1\)

\(\Rightarrow M=4\)

Trường hợp thứ hai\(a+b+c+d=0\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)

\(\Rightarrow M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(\Rightarrow M=-4\)

Vậy \(M\in\left\{4;-4\right\}\)

Bình luận (0)
PU
28 tháng 11 2017 lúc 22:08

Tính chất của dãy tỉ số bằng nhau

Bình luận (0)
TA
28 tháng 11 2017 lúc 22:09

Ta có: \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{b+c+a}\)

\(\Rightarrow\dfrac{a}{b+c+d}+1=\dfrac{b}{a+c+d}+1=\dfrac{c}{a+b+d}+1=\dfrac{d}{b+c+a}+1\)

\(\Rightarrow\dfrac{a+b+c+d}{b+c+d}=\dfrac{a+b+c+d}{a+c+d}=\dfrac{a+b+c+d}{a+b+d}=\dfrac{a+b+c+d}{b+c+a}\)

+) Nếu \(a+b+c+d\ne0\) thì từ trên suy ra:

\(b+c+d=a+c+d=a+b+d=b+c+a\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=1+1+1+1=4\)

+) Nếu \(a+b+c+d=0\) thì \(\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{-\left(c+d\right)}{c+d}+\dfrac{-\left(a+d\right)}{a+d}+\dfrac{-\left(a+b\right)}{a+b}+\dfrac{-\left(b+c\right)}{b+c}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy *Với \(a+b+c+d\ne0\) thì M = 4

* Với \(a+b+c+d=0\) thì M = -4

Bình luận (0)

Các câu hỏi tương tự
CG
Xem chi tiết
NK
Xem chi tiết
TD
Xem chi tiết
VN
Xem chi tiết
TP
Xem chi tiết
NH
Xem chi tiết
NX
Xem chi tiết
ML
Xem chi tiết
VH
Xem chi tiết