Những câu hỏi liên quan
HA
Xem chi tiết
ND
23 tháng 7 2018 lúc 10:00

\(C=2x^2+5y^2+4xy+8x-4y-100 \)

\(C=\left(x^2+8x+16\right)+\left(y^2-4y+4\right)+\left(x^2+4xy+4y^2\right)-120\)

\(C=\left(x+4\right)^2+\left(y-2\right)^2+\left(x+2y\right)^2-120\ge-120\)

Vậy GTNN của C là -120 khi x = -4; y = 2

Bình luận (0)
YT
23 tháng 7 2018 lúc 10:05

\(C=x^2+4xy+4y^2+x^2+8x+16+y^2-4y+4-120\)

\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\)

vậy GTNN của C là -120 khi \(x=-4;y=2\)

Bình luận (0)
NL
Xem chi tiết
NH
16 tháng 9 2018 lúc 19:36

\(P=2x^2+5y^2+4xy+8x-4y+15\)

\(=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-5\)

\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-5\)

Ta có :

\(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x+4\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\) \(\Leftrightarrow P\ge-5\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy \(P_{Min}=-5\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
NL
24 tháng 8 2020 lúc 15:17

Bài 1:

a) \(M=x^2-3x+10=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)

KL:...

Bình luận (0)
 Khách vãng lai đã xóa
KN
24 tháng 8 2020 lúc 15:38

2. a. \(A=12a-4a^2+3=-4\left(a-\frac{3}{2}\right)^2+12\)

Vì \(\left(a-\frac{3}{2}\right)^2\ge0\forall a\)\(\Rightarrow-4\left(a-\frac{3}{2}\right)^2+3\le3\)

Dấu "=" xảy ra \(\Leftrightarrow-4\left(a-\frac{3}{2}\right)^2=0\Leftrightarrow a-\frac{3}{2}=0\Leftrightarrow a=\frac{3}{2}\)

Vậy Amax = 3 <=> a = 3/2

b. \(B=4t-8v-v^2-t^2+2017=-\left(v^2+t^2-4t+8v+20\right)+2037\)

\(=-\left(t-2\right)^2-\left(v+4\right)^2+2037\)

Vì \(\left(t-2\right)^2\ge0;\left(v+4\right)^2\ge0\forall t;v\)

\(\Rightarrow-\left(t-2\right)^2-\left(v+4\right)^2+2037\le2037\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(t-2\right)^2=0\\\left(v+4\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t-2=0\\v+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\v=-4\end{cases}}\)

Vậy Bmax = 2037 <=> t = 2 ; v = - 4

c. \(C=m-\frac{m^2}{4}=-\frac{1}{4}\left(m-2\right)^2+1\)

Vì \(\left(m-2\right)^2\ge0\forall m\)\(\Rightarrow-\frac{1}{4}\left(m-2\right)^2+1\le1\)

Dấu "=" xảy ra \(\Leftrightarrow-\frac{1}{4}\left(m-2\right)^2=0\Leftrightarrow m-2=0\Leftrightarrow m=2\)

Vậy Cmax = 1 <=> m = 2

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
LH
16 tháng 9 2018 lúc 19:55

a, \(P=2x^2+5y^2+4xy+8x-4y+15\)

\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-5\)\(\ge-5\)

Dấu "="xảy ra khi:\(\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=2\end{cases}}\)

Vậy...

b, \(C=2x^2+4xy+4y^2-3x-1\)

\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

sau đó giải tương tự câu a nhé

Bình luận (0)
NC
Xem chi tiết
NT
12 tháng 3 2022 lúc 22:18

\(A=x^2-8x+16+x^2+4xy+4y^2+y^2+4y+4+2004\)

\(=\left(x-4\right)^2+\left(x+2y\right)^2+\left(y+2\right)^2+2004\ge2004\)

Dấu ''='' xảy ra khi x = 4 ; y = -2 

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 10 2023 lúc 19:20

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)

\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)

\(B=-4x^2-5y^2+8xy+10y+12\)

\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)

\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)

\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)

=>x=y=5

 

Bình luận (0)
H24
Xem chi tiết
NT
27 tháng 7 2023 lúc 13:47

2:

a: =-(x^2-12x-20)

=-(x^2-12x+36-56)

=-(x-6)^2+56<=56

Dấu = xảy ra khi x=6

b: =-(x^2+6x-7)

=-(x^2+6x+9-16)

=-(x+3)^2+16<=16

Dấu = xảy ra khi x=-3

c: =-(x^2-x-1)

=-(x^2-x+1/4-5/4)

=-(x-1/2)^2+5/4<=5/4

Dấu = xảy ra khi x=1/2

Bình luận (0)
H9
27 tháng 7 2023 lúc 13:58

1) 

a) \(A=x^2+4x+17\)

\(A=x^2+4x+4+13\)

\(A=\left(x+2\right)^2+13\) 

Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)

Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)

Vậy: \(A_{min}=13\) khi \(x=-2\)

b) \(B=x^2-8x+100\)

\(B=x^2-8x+16+84\)

\(B=\left(x-4\right)^2+84\)

Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)

Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)

Vậy: \(B_{min}=84\) khi \(x=4\)

c) \(C=x^2+x+5\)

\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)

\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
NT
26 tháng 7 2023 lúc 21:23

1:

a: A=x^2+4x+4+13

=(x+2)^2+13>=13

Dấu = xảy ra khi x=-2

b; =x^2-8x+16+84

=(x-4)^2+84>=84

Dấu = xảy ra khi x=4

c: =x^2+x+1/4+19/4

=(x+1/2)^2+19/4>=19/4

Dấu = xảy ra khi x=-1/2

 

Bình luận (0)
NL
Xem chi tiết