Những câu hỏi liên quan
CH
Xem chi tiết
NC
20 tháng 10 2020 lúc 14:45

ĐK: \(\sqrt{x-2m}-3\ne0\Leftrightarrow x-2m\ne9\Leftrightarrow x\ne9+2m\)

Hàm số xác đinh trên khoảng (3; 5) 

<=>  2m + 9 \(\le\)3 hoặc 2m + 9 \(\ge\)5

<=> m \(\le\)-3 hoặc m \(\ge\)-2

Bình luận (0)
 Khách vãng lai đã xóa
QD
Xem chi tiết
DK
Xem chi tiết
NL
22 tháng 10 2021 lúc 13:48

ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\)

\(\Rightarrow x\in[m-1;2m)\)

Để hàm xác định trên (3;4)

\(\Rightarrow\left(3;4\right)\subset[m-1;2m)\)

\(\Rightarrow\left\{{}\begin{matrix}m-1\le3\\2m\ge4\end{matrix}\right.\) \(\Rightarrow2\le m\le4\)

Bình luận (0)
H24
Xem chi tiết
TT
Xem chi tiết
NB
Xem chi tiết
PB
Xem chi tiết
CT
28 tháng 1 2019 lúc 8:51

Đáp án D

Bình luận (0)
MY
Xem chi tiết
CT
12 tháng 10 2021 lúc 10:03

Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq 
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2 
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]

Khi $m-2\geq 2m-3$ hay $m\leq 1$ thì $(*)$ tương đương $x\geq m-2$. Do đó tập xác định của hàm số đã cho là $[m-2;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [m-2;+\infty) \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m-2\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m\leq 2\end{aligned}\right. \Leftrightarrow m\leq 1.\]Khi $m-2< 2m-3$ hay $m> 1$ thì $(*)$ tương đương $x\geq 2m-3$. Do đó tập xác định của hàm số đã cho là $[2m-3;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [2m-3;+\infty) \Leftrightarrow \left\{\begin{aligned}&m>1 \\&2m-3\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m> 1 \\&m\leq \dfrac{3}{2}\end{aligned}\right. \Leftrightarrow 1<m\leq \dfrac{3}{2}.\]

Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
NT
20 tháng 9 2020 lúc 6:13

ĐKXĐ: \(\hept{\begin{cases}x-m>0,\forall x\in\left(-1;0\right)\\-x+2m+6\ge0,\forall x\in\left(-1;0\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x>m,\forall x\in\left(-1;0\right)\\2m+6\ge x,\forall x\in\left(-1;0\right)\end{cases}}}\)

+) \(m< x,\forall x\in\left(-1;0\right)\)thì \(m\)phải bé hơn GTNN của x trên đoạn (-1;0)

\(\Rightarrow m< -1\)

+) \(2m+6\ge x,\forall x\in\left(-1;0\right)\)thì 2m+6 phải lớn hơn GTLN của x trên đoạn (-1;0)

\(\Rightarrow2m+6\ge0\Leftrightarrow m\ge-3\)

Vậy \(-3\le m< -1\)thỏa đề.

Bình luận (0)
 Khách vãng lai đã xóa
TL
20 tháng 9 2020 lúc 8:52

Điều kiện để hàm số đã cho xác định là \(\hept{\begin{cases}x-m>0\\-x+2m+6\ge0\end{cases}\Leftrightarrow m< x\le2m+6}\)

Để hàm số có tập xác định \(D\ne\varnothing\)thì phải có m<2m+6 => m>-6 (*) Khi đó hàm số có tập xác định là (m;2m+6]

Hàm số xác định trên (-1;0) khi và chỉ khi (-1;0)\(\subset\)(m;2m+6], điều này tương đương với 

\(\hept{\begin{cases}m\le-1\\2m+6\ge0\end{cases}\Leftrightarrow-3\le m\le-1}\)kết hợp với (*) ta được \(-3\le m\le-1\)

KL:

Bình luận (0)
 Khách vãng lai đã xóa