Những câu hỏi liên quan
MD
Xem chi tiết
H24
21 tháng 12 2022 lúc 17:41

`A=4+4^2+4^3+...+4^98 +4^99`

`A=(4+4^2+4^3)+...+(4^97 +4^98 +4^99)`

`A=4(1+4+4^2)+...+4^97 (1+4+4^2)`

`A=4.21+...+4^97 .21`

`A=21.(4+4^97)  \vdots 21`

   `=>Đpcm`

Bình luận (0)
NT
Xem chi tiết
NT
21 tháng 10 2021 lúc 22:47

giúp tớ với

Bình luận (0)
 Khách vãng lai đã xóa
TG
17 tháng 12 2021 lúc 8:46

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
PC
18 tháng 10 2017 lúc 12:06

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=1.21+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=1.21+4^3.21+...+4^57.21

A=(1+4^3+...+4^57).21

Vậy A chia hết cho 21

Bình luận (0)
PN
6 tháng 11 2024 lúc 19:32

C= 4(1+4+4^2+4^3+4^4+...+4^59) 

C= 4+4^2+4^3+4^4+...+4^59

C=(4.1+4.4+4.4^2) +(4^3.1+4^3.4+4^3.4^2) +... +(4^57.1+4^57.4+4^57.4^2) 

C= 4.(1+4+16) +4^3(1+4+16) +... +4^57.(1+4+16) 

C=4.21 + 4^3.21+4^57.21

Suy ra C chia hết cho 21

Bình luận (0)
H24
Xem chi tiết

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

Bình luận (0)
NN
Xem chi tiết
PP
26 tháng 10 2016 lúc 11:51

gộp 1 tổng 3 số rồi làm nha mình ko chỉ thêm đâu

Bình luận (0)
ND
Xem chi tiết
SC
Xem chi tiết
NK
30 tháng 10 2016 lúc 11:06

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)

A = 5460.(1+4^6+4^12+4^18)

A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420

A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21

Bình luận (0)
PT
Xem chi tiết
LL
31 tháng 8 2021 lúc 19:06

a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)

b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)

c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)

Bình luận (1)
TT
31 tháng 8 2021 lúc 19:10

\(A=4+4^2+4^3+.....+4^{60}\)

\(A=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+....4^{57}.\left(1+4+4^2\right)\)

\(A\)\(=21+4^3.21+...4^{57}.21\)

\(\Rightarrow A⋮4;21\)

ko chia hết cho 5

 

Bình luận (4)
NT
31 tháng 8 2021 lúc 21:46

a:Ta có: \(A=4+4^2+4^3+...+4^{60}\)

\(=4\left(1+4+4^2+...+4^{59}\right)⋮4\)

b: Ta có: \(A=4+4^2+4^3+...+4^{60}\)

\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)\)

\(=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\)

Bình luận (0)
NH
Xem chi tiết
HY
26 tháng 10 2016 lúc 10:50

A = \(4^0\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

A = \(21\left(4^0+4^3+...+4^{57}\right)\) chia hết cho 21

Hình như số cuối phải là 4^59 chứ nhỉ ??

Bình luận (2)
NP
26 tháng 10 2016 lúc 12:02

A=1+4+42+43+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=21(1+43+...+459)\(⋮\)21

\(\Rightarrow\)A\(⋮\)21

Bình luận (0)