tìm x,y biết:
a)5^2x-1=5^2x-3=125.24
b)x-y=xy=x:y(y khác 0)
Tìm các số x,y,z biết:
a) x:y = 2:5 và 2x - y = 3
b) x/2 = y/3; y/4 = z/7 và 2x - y + z =50
c) x/2 = y/3 = z/4 và x2 - y2 + 2z2 = 108
Lời giải:
a. Áp dụng TCDTSBN:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)
$\Rightarrow x=-3.2=-6; y=-3.5=-15$
b. Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$
$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$
$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$
$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$
c.
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$
$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$
$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$
Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$
Tìm x, y biết:
a) (x-1)(y+2)=7
b)x(y - 1) + y = 4
c) xy - 2x + y = 4
d)x^2 - 3xy + 2x - 6y = 5
`@` `\text {Ans}`
`\downarrow`
`a)`
`(x-1)(y+2)=7`
`=> (x - 1)(y + 2) \in` Ư`(7) = {7; 1; -1; -7}`
Ta có bảng sau:
`x - 1` | `7` | `1` | `-1` | `-7` |
`y + 2` | `1` | `7` | `-7` | `-1` |
`x` | `8` | `2` | `0` | `-6` |
`y` | `-1` | `5` | `-9` | `-3` |
Vậy, ta có cặp `(x; y)` thỏa mãn `{-1; 8}; {2; 5}; {-9; 0}; {-6; -3}`
`b)`
`x(y - 1) + y = 4`
`=> x(y - 1) + y - 4 = 0`
`=> x(y - 1) + (y - 1) - 3 = 0`
`=> (x + 1)(y - 1) = 3`
`=> (x + 1)(y - 1) \in` Ư`(3) = {-1; -3; 1; 3}`
Ta có bảng sau:
`x + 1` | `1` | `3` | `-1` | `-3` |
`y - 1` | `3` | `1` | `-3` | `-1` |
`x` | `0` | `2` | `-2` | `-4` |
`y` | `4` | `2` | `-2` | `0` |
Vậy, ta có cặp `(x; y)` thỏa mãn `{0; 4}; {2; 2}; {-2; -2}; {-4; 0}`
Bài 4: tìm x,y ϵ Z, biết:
a) (x - 3) (2y - 6) = 5
b) (2x + 1) (y + 2)= 10
c) xy - 5x + 2y = 7
d) xy - 3x - 4y = 5
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
Tìm số nguyên x và y biết:
a) ( x-2).( y-3)= 5
b) (2x - 1).(y - 4) = -11
c) xy-2x+y=3
a: (x-2)(y-3)=5
=>\(\left(x-2\right)\cdot\left(y-3\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x-2;y-3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;8\right);\left(7;4\right);\left(1;-2\right);\left(-3;2\right)\right\}\)
b: (2x-1)*(y-4)=-11
=>\(\left(2x-1\right)\cdot\left(y-4\right)=1\cdot\left(-11\right)=\left(-11\right)\cdot1=\left(-1\right)\cdot11=11\cdot\left(-1\right)\)
=>\(\left(2x-1;y-4\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(-5;5\right);\left(0;15\right);\left(6;3\right)\right\}\)
c: xy-2x+y=3
=>\(x\left(y-2\right)+y-2=1\)
=>\(\left(x+1\right)\left(y-2\right)=1\)
=>\(\left(x+1\right)\cdot\left(y-2\right)=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y-2\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;3\right);\left(-2;1\right)\right\}\)
tìm các số hữu tỉ x,y biết x-y=2x+y=x:y ( y khác 0)
Tìm x;y biết:
a,(2x +3)(y - 1) =54
b, xy - x +2y = 54
a) \(\left(2x+3\right)\left(y-1\right)=54\)
\(\Rightarrow2x+3,y-1\inƯ\left(54\right)\)
Ta có bảng sau:
2x + 3 | 54 | 1 | -1 | -54 | 2 | -2 | 27 | -27 | -9 | 9 | 6 | -6 | 18 | -18 | -3 | 3 |
y - 1 | 1 | 54 | -54 | -1 | 27 | -27 | 2 | -2 | -6 | 6 | 9 | -9 | 3 | -3 | -18 | 18 |
x | 51/2 | -1 | -2 | -57/2 | -1/2 | -5/2 | 12 | -15 | -6 | 3 | 3/2 | -9/2 | 15/2 | -21/2 | -3 | 0 |
y | 2 | 55 | -53 | 0 | 28 | -26 | 3 | -1 | -5 | 7 | 10 | -8 | 4 | -2 | -17 | 19 |
Vậy: ...
Tìm hai số hữu tỉ x và y sao cho :
a) x+y =xy=x:y ( y khác 0)
b) x-y=xy=x:y( y khác 0)
1.Tìm x,y thuộc Q sao cho : x.y= x:y= x+y
2.Tìm x, y thuộc Q sao cho :
a. |x+1| - |y-3| =0 b. |2x+3| - |2x-5| =0
Bài 1:
xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = 1\(\frac{1}{2}\) ; y = -1
x+y=xy
=>x=y(x-1)
=>x:y=x-1
=>x-1=x+y
=>y= -1
Ta có -x=x-1
<=>-2x=-1
<=>x=0,5
Tìm x, y ∈ Z biết:
a, (x - 3)(y + 5) = 11
b, (2x + 1)(6 - y) = 12
Lời giải:
a. Vì $x,y$ thuộc $Z$ nên $x-3, y+5\in\mathbb{Z}$. Tích của chúng $=11$ nên ta có bảng sau:
x-3 | 1 | 11 | -1 | -11 |
y+5 | 11 | 1 | -11 | -1 |
x | 4 | 14 | 2 | -8 |
y | 6 | -4 | -16 | -6 |
b. Vì $x,y\in\mathbb{Z}$ nên $2x+1, 6-y\in\mathbb{Z}$.
Với $x$ nguyên thì $2x+1$ là số nguyên lẻ nên ta có bảng sau:
2x+1 | 1 | -1 | 3 | -3 |
6-y | 12 | -12 | 4 | -4 |
x | 0 | -1 | 1 | -2 |
y | -6 | 18 | 2 | 10 |