Những câu hỏi liên quan
BB
Xem chi tiết
NT
10 tháng 12 2020 lúc 22:50

Áp dụng bất đẳng thức Cosi cho những số không âm, ta được: 

\(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4\cdot b^4\cdot c^4\cdot d^4}=4abcd\)

Dấu '=' xảy ra khi a=b=c=d

hay tứ giác ABCD là hình thoi

Bình luận (0)
HN
Xem chi tiết
LT
Xem chi tiết
H24
2 tháng 7 2021 lúc 15:45

`a^4+b^4+c^4+d^4=4abcd`

`<=>a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4=4abcd-2a^2b^2-2c^2d^2`

`<=>(a^2-b^2)^2+(c^2-d^2)^2+2(a^2b^2-2abcd+c^2d^2)>=0`

`<=>(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0`

Vì `VT>=0AA a,b,c,d`

Dấu "=" xảy ra khi `a^2=b^2,c^2=d^2,ab=cd`

`<=>a=b=c=d`

Bình luận (0)
MY
2 tháng 7 2021 lúc 15:49

áp dụng BDT AM-GM

\(=>a^4+b^4\ge2\sqrt{\left(ab\right)^4}=2a^2b^2\left(1\right)\)

\(=>c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\left(2\right)\)

(1)(2)\(=>a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\ge4abcd\)

dấu"=" xảy ra\(< =>\left\{{}\begin{matrix}a^4=b^4\\c^4=d^4\end{matrix}\right.< =>a=b=c=d}\)

Bình luận (0)
LB
Xem chi tiết
H24
15 tháng 4 2017 lúc 18:19

\(\left\{{}\begin{matrix}A=\left(a^4+b^4\right)\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left[\dfrac{\left(a+b\right)^2}{2}\right]^2}{2}\ge\dfrac{\left[\dfrac{4ab}{2}\right]^2}{2}\\B=\left(c^4+d^4\right)\ge\left(c^2+d^2\right)^2\ge\dfrac{\left[\dfrac{\left(c+d\right)^2}{2}\right]^2}{2}\ge\dfrac{\left[\dfrac{4cd}{2}\right]^2}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A\ge\dfrac{\left(2ab\right)^2}{2}\\B\ge\dfrac{\left(2cd\right)^2}{2}\end{matrix}\right.\)(1)

\(\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\)(2)

(1) và (2) \(\Rightarrow A+B\ge\dfrac{\left(2ab\right)^2+\left(2cd\right)^2}{2}\ge\dfrac{2\left(4abcd\right)}{2}=4abcd\)

đẳng thức khi a=b=c=d

Bình luận (5)
LF
15 tháng 4 2017 lúc 18:22

Ta có BĐT \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)

Đẳng thức xảy ra khi \(\left(a-b\right)^2=0\Rightarrow a=b\)

Vậy ta có: \(a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\)

\(c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\)

Cộng theo vế 2 BĐT trên ta có:

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\)

Lại có: \(\left(ab\right)^2+\left(cd\right)^2\ge2\sqrt{\left(ab\right)^2\left(cd\right)^2}=2abcd\)

\(\Rightarrow2\left[\left(ab\right)^2+\left(cd\right)^2\right]\ge2\cdot2abcd=4abcd\)

\(\Rightarrow VT=a^4+b^4+c^4+d^4\ge4abcd=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a^4=b^4\\c^4=d^4\\\left(ab\right)^2=\left(cd\right)^2\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}a=b\\c=d\\ab=cd\end{matrix}\right.\)\(\Rightarrow a=b=c=d\)

Bình luận (3)
LF
15 tháng 4 2017 lúc 18:09

giá mà chi a,b,c,d dương

Bình luận (5)
EC
Xem chi tiết
HG
28 tháng 1 2018 lúc 21:31

Với a,b,c,d >0\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^4-2c^2d^2+d^4\right)+\left(2a^2b^2+2c^2d^2-4abcd\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(a^2b^2-2abcd+c^2d^2\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(ab-cd\right)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(a^2-b^2\right)^2\ge0\forall a,b\\\left(c^2-d^2\right)^2\ge0\forall c,d\\\left(ab-cd\right)^2\ge0\forall a,b,c,d\end{matrix}\right.\)

Do đó: \(\left\{{}\begin{matrix}a^2-b^2=0\\c^2-d^2=0\\ab-cd=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\left(\text{đ}pcm\right)\)

Bình luận (0)
TP
Xem chi tiết
LF
15 tháng 8 2016 lúc 19:33

Ta áp dụng Cauchy 2 số

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\cdot2abcd\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)

Dấu = khi \(\begin{cases}a^4=b^4\\c^4=d^4\\a^2b^2=c^2d^2\end{cases}\)\(\Rightarrow a=b=c=d\)

 

Bình luận (0)
LF
15 tháng 8 2016 lúc 19:36

Nhanh hơn có thể dùng Cauchy 4 số 

\(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4b^4c^4d^4}\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)

Dấu = khi các biến bằng nhau

\(\Leftrightarrow a=b=c=d\)

Bình luận (0)
QN
Xem chi tiết
NL
5 tháng 4 2020 lúc 17:47

a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .

-> Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)

- Cộng 2 bpt lại ta được :

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)

- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)

=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)

b, CMTT câu 1 .

- Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

- Nhân 3 bpt trên lại ta được :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
HP
16 tháng 6 2016 lúc 18:14

Bn xem lại  đề ,sao lại là a= b=c-d?

Bình luận (0)
HN
16 tháng 6 2016 lúc 21:52

Áp dụng bất đẳng thức Cosi cho 4 số không âm : \(a^4,b^4,c^4,d^4\), ta được  ;

\(a^4+b^4+c^4+d^4\ge4.\sqrt[4]{a^4.b^4.c^4.d^4}=4abcd\)

Dấu đẳng thức xảy ra <=> a = b = c = d

Do đó, ta có đpcm.

Bình luận (0)
HP
17 tháng 6 2016 lúc 8:12

Hoàng Lê Bảo Ngọc: để này là phải đung hằng đẳng thức để chứng minh chứ

Bình luận (0)