LT

Cho a^4+b^4+c^4+d^4=4abcd với a,b,c,d lá số thực dương.CMR: a=b=c=d

H24
2 tháng 7 2021 lúc 15:45

`a^4+b^4+c^4+d^4=4abcd`

`<=>a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4=4abcd-2a^2b^2-2c^2d^2`

`<=>(a^2-b^2)^2+(c^2-d^2)^2+2(a^2b^2-2abcd+c^2d^2)>=0`

`<=>(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0`

Vì `VT>=0AA a,b,c,d`

Dấu "=" xảy ra khi `a^2=b^2,c^2=d^2,ab=cd`

`<=>a=b=c=d`

Bình luận (0)
MY
2 tháng 7 2021 lúc 15:49

áp dụng BDT AM-GM

\(=>a^4+b^4\ge2\sqrt{\left(ab\right)^4}=2a^2b^2\left(1\right)\)

\(=>c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\left(2\right)\)

(1)(2)\(=>a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\ge4abcd\)

dấu"=" xảy ra\(< =>\left\{{}\begin{matrix}a^4=b^4\\c^4=d^4\end{matrix}\right.< =>a=b=c=d}\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
LB
Xem chi tiết
TN
Xem chi tiết
LQ
Xem chi tiết
PH
Xem chi tiết
DH
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
CN
Xem chi tiết