cho pt \(msinx+2cosx=1-m\). Tìm m để pt có nghiệm \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
Tìm m để pt có 2 nghiệm thuộc \(\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
(2cosx-1)(2cos2x+2cosx-m)= 3-4sin2x
tìm m để pt có nghiệm
a)\(m+1=\frac{cosx}{sinx+cosx+2}\)
b) \(m=\frac{msinx-1}{2cosx-sinx+4}\)
1. Với giá trị nào của m thì pt sinx = 1+m có nghiệm?
2. Tìm m để pt 5cosx - msinx = m+1 có nghiệm?
1.
Phương trình có nghiệm khi \(1+m\in\left[-1;1\right]\Rightarrow m\in\left[-2;0\right]\).
2.
Phương trình có nghiệm khi \(5+m^2\ge\left(m+1\right)^2\)
\(\Leftrightarrow5+m^2\ge m^2+2m+1\)
\(\Leftrightarrow2m\le4\)
\(\Leftrightarrow m\le2\)
Bài 5 á Cho pt msinx+ căn 3×cosx=m+1 Tìm m để pt vô nghiệm
\(msinx+\sqrt{3}cosx=m+1\)
Phương trình có nghiệm\(\Leftrightarrow\) \(m^2+\left(\sqrt{3}\right)^2\ge\left(m+1\right)^2\)
\(\Rightarrow3\ge2m+1\Rightarrow m\le1\)
Vậy pt vô nghiệm\(\Leftrightarrow m>1\)
1. Tập giá trị của hs: y = sin2x + cos2x là?
2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)
3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\)
4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\)
5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\)
6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\)
7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? \(a.M\left(\frac{\pi}{4};0\right)\) \(b.M\left(\frac{\pi}{2};1\right)\) \(c.M\left(\frac{-\pi}{4};0\right)\) d. M(1;1)
8. Nghiệm của pt: \(2sin^2x-3sinx+1=0\) thỏa đk: \(0\le x\le\frac{\pi}{2}\) là:
9. Cho pt: m(sinx+cosx)+sinx.cosx+1=0. Tìm m để pt có đúng 1 nghiệm thuộc: \(\left[\frac{-\pi}{2};0\right]\)
10. Giải pt: \(\sqrt{3}cos5x-sin5x=2cos3x\)
11. Tập giá trị của hs: y = cos2x + 4sinx - 2 là?
12. Pt: \(2cos^2x+5sinx=4\) có nghiệm âm lớn nhất =?
13. Tổng tất cả các nghiệm của pt: cos5x + cos2x + 2sin3x.sin2x = 0 trên đoạn: \(\left[0;2\pi\right]\) là?
14. Tìm m để pt: cos2x - (2m - 1)cosx - m + 1 = 0 có đúng 2 nghiệm thuộc: \(\left[\frac{-\pi}{2};\frac{\pi}{2}\right]\) là?
15. Đồ thị hs: y = tanx - 2 đi qua? a. O(0;0) b.M\(\left(\frac{\pi}{4};-1\right)\) c. \(N\left(1;\frac{\pi}{4}\right)\) d. \(P\left(\frac{-\pi}{4};1\right)\)
1.
\(y=\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)\Rightarrow\) tập giá trị là \(\left[-\sqrt{2};\sqrt{2}\right]\)
2. ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\)
\(\frac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=x+\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
\(\Leftrightarrow2y+y.cosx=sinx+2cosx+3\)
\(\Leftrightarrow sinx+\left(2-y\right)cosx=2y-3\)
\(\Rightarrow1^2+\left(2-y\right)^2\ge\left(2y-3\right)^2\)
\(\Leftrightarrow3y^2-8y+4\le0\)
\(\Rightarrow\frac{2}{3}\le y\le2\)
4.
\(y=2\left(\frac{\sqrt{3}}{2}cos\frac{x}{2}-\frac{1}{2}sin\frac{x}{2}\right)=2cos\left(\frac{x}{2}+\frac{\pi}{6}\right)\)
\(\Rightarrow-2\le y\le2\)
5.
\(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=\frac{1}{2}sin7x-\frac{\sqrt{3}}{2}cos7x\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sin\left(7x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\7x-\frac{\pi}{3}=\frac{5\pi}{6}-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
cho pt \(2sin^2x+\left(5m-2\right)sin2x-3\left(m+1\right).cos^2x=3m\). Tìm m để pt có đúng 3 nghiệm thuoc \(\left(-\frac{\pi}{2};\pi\right)\)
5.msinx=sĩn2+sin3x
tìm m để pt có nghiệm
a. x khác kpi
b.x khác 2kpi
c.x thuộc (pi/2;pi)
khó quá đi ; mà hình như nó gần dúng như bài 4 bạn đăng á !!
Mk ko bk nữa
Cho phương trình: \(m=\sin^4x+\cos^4x+\cos2x\)
a, Tìm m để pt có nghiệm
b, Tìm m để pt có nghiệm \(\in\left[\frac{-\pi}{2};\frac{\pi}{2}\right]\)
Cho\(\left(m-2\right)x^2-2\left(m-2\right)x+3=0\)
a)tìm m để pt có nghiệm kép
b)tìm m để pt co 2 nghiệm phân biệt
c)tìm m để pt có nghiệm
d)tìm m để pt vô nghiệm
\(\Delta'=\left(m-2\right)^2-3\left(m-2\right)=\left(m-2\right)\left(m-5\right)\)
a.
Phương trình có nghiệm kép khi:
\(\left\{{}\begin{matrix}a=m-2\ne0\\\Delta'=\left(m-2\right)\left(m-5\right)=0\end{matrix}\right.\) \(\Rightarrow m=5\)
b.
Phương trình có 2 nghiệm pb khi:
\(\left\{{}\begin{matrix}m-2\ne0\\\left(m-2\right)\left(m-5\right)>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>5\\m< 2\end{matrix}\right.\)
c.
- Với \(m=2\) pt vô nghiệm
- Với \(m\ne2\) pt có nghiệm khi: \(\left(m-2\right)\left(m-5\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}m\ge5\\m< 2\end{matrix}\right.\)
d.
Pt vô nghiệm khi: \(\left[{}\begin{matrix}m=2\\\left(m-2\right)\left(m-5\right)< 0\end{matrix}\right.\)
\(\Rightarrow2\le m< 5\)