Những câu hỏi liên quan
NO
Xem chi tiết
KA
Xem chi tiết
CT
Xem chi tiết
KA
Xem chi tiết
AS
Xem chi tiết
DH
Xem chi tiết
H24
21 tháng 7 2019 lúc 16:49

\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)

\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)

\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)

Bình luận (0)
H24
21 tháng 7 2019 lúc 16:54

b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có: 

 \(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\) 

Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)

Bình luận (0)
H24
21 tháng 7 2019 lúc 16:57

c)\(\sqrt{2}-\sqrt{6}=\sqrt{2}.\left(\sqrt{1}-\sqrt{3}\right)>\left(1-\sqrt{3}\right)\)

Vậy \(\sqrt{2}-\sqrt{6}>1-\sqrt{3}\)

Bình luận (0)
LT
Xem chi tiết
NL
3 tháng 6 2020 lúc 15:05

\(cos^2x-\left(2sin\frac{x}{2}cos\frac{x}{2}\right)^2=cos^2x-sin^2x=cos2x\)

\(\frac{sin3x}{sinx}-\frac{cos3x}{cosx}=\frac{sin3x.cosx-cos3x.sinx}{sinx.cosx}=\frac{sin\left(3x-x\right)}{\frac{1}{2}sin2x}=\frac{2sin2x}{sin2x}=2\)

\(\frac{cosx+cos3x+cos2x+cos4x}{sinx+sin3x+sin2x+sin4x}=\frac{2cosx.cos2x+2cosx.cos3x}{2sin2x.cosx+2sin3x.cosx}=\frac{2cosx\left(cos2x+cos3x\right)}{2cosx\left(sin2x+sin3x\right)}\)

\(=\frac{cos2x+cos3x}{sin2x+sin3x}=\frac{2cos\frac{x}{2}.cos\frac{5x}{2}}{2sin\frac{5x}{2}.cos\frac{x}{2}}=cot\frac{5x}{2}\)

Bình luận (0)
MH
Xem chi tiết