1. x^2yz+5xyz-15yz
2. (x^2+1)^2-4x^2
3. x^3-x^2-12x
4. x^5-5x^3+4x
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
bài 1 Tim x a, 0,6x(x-0,5)-0,3x(2x+1,3)=0,138. , b, 3x2-3x(-2+x)=36. c, 2.(5x-8)-3(4x-5)=4(3x-4)+11 d, 1/3x2-4x+2x(2-3x)=0. e, 5x-3{4x-2(5x-2)]}=182 bài 2 thực hiện phép tính a, (-2x3-1/4y-4yz)8xy2 c,-6x+3(7+2x) e, 1/3xz(-9xy+15yz)+3x2(2yz2-yz)
phân tích đa thức thành nhân tử
1)ab(a+b)-2bc(b-2c)-2ca(a-2c)-4abc
2)a^2b+2ab^2+4b^2c+4bc^2+2c^2a+ca^2+4abc
3)(x^2-6x+5)(x^2-10x+21)-20
4)4(x^2+x+1)^2+5x(x^2+x+1)+x^2
5)x^4+5x^3-12x^2+5x+1
6)(x+1)(x-4)(x+2)(x-8)+4x^2
7)4x^3+5x^2+10x-12
8)(x+3)^2(3x+8)(3x+10)-8
9)(4x+1)(12x-1)(3x+2)(x+1)-4
Giải các phương trình sau
a)\(x^3+8x=5x^2+4\)
b) \(x^3+3x^2=x+6 \)
c)\(2x+3\sqrt{x}=1\)
4) \(x^4+4x^2+1=3x^3+3x\)
5)\((12x-1)(6x-1)(4x-1)(3x-1)=330\)
a: \(x^3+8x=5x^2+4\)
=>\(x^3-5x^2+8x-4=0\)
=>\(x^3-x^2-4x^2+4x+4x-4=0\)
=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2=0\)
=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: \(x^3+3x^2=x+6\)
=>\(x^3+3x^2-x-6=0\)
=>\(x^3+2x^2+x^2+2x-3x-6=0\)
=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
3: ĐKXĐ: x>=0
\(2x+3\sqrt{x}=1\)
=>\(2x+3\sqrt{x}-1=0\)
=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)
=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)
=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)
=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)
=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)
4: \(x^4+4x^2+1=3x^3+3x\)
=>\(x^4-3x^3+4x^2-3x+1=0\)
=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)
=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)
=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
a.
\(x^3+8x=5x^2+4\)
\(\Leftrightarrow x^3-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b.
\(x^3+3x^2-x-6=0\)
\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)
\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)
c.
\(2x+3\sqrt{x}+1=0\)
ĐKXĐ: \(x\ge0\)
Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}2x\ge0\\3\sqrt{x}\ge0\end{matrix}\right.\)
\(\Rightarrow2x+3\sqrt{x}+1>0\)
Pt đã cho vô nghiệm
d.
\(x^4+4x^2+1=3x^3+3x\)
\(\Leftrightarrow x^4-3x^3+4x^2-3x+1=0\)
- Với \(x=0\) ko phải nghiệm
- Với \(x\ne0\) chia cả 2 vế của pt cho \(x^2\)
\(\Rightarrow x^2-3x+4-\dfrac{3}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)-3\left(x+\dfrac{1}{x}\right)+2=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)
Đặt \(x+\dfrac{1}{x}=t\)
\(\Rightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-2x+1=0\end{matrix}\right.\)
\(\Rightarrow x=1\)
Tìm x:
1/3x(\(-\dfrac{4}{3}\)x+1)-4x(x-2)=10
2/5(x2-3x+1)+x(1-5x)=x-2
3/12x2-4x(3x-5)=10x-17
4/4x2-2x+3-4x(x-5)=7x-3
5/-3(x-5)+5(x-1)+3x2=4-x
1: \(\Leftrightarrow-4x^2+3x-4x^2+8x=10\)
=>-8x^2+11x-10=0
=>\(x\in\varnothing\)
2: \(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)
=>-14x+5=x-2
=>-15x=-7
=>x=7/15
3: \(\Leftrightarrow12x^2-12x^2+20x=10x-17\)
=>10x=-17
=>x=-17/10
4: \(\Leftrightarrow4x^2-2x+3-4x^2+20x=7x-3\)
=>18x+3=7x-3
=>11x=-6
=>x=-6/11
5: \(\Leftrightarrow-3x+15+5x-5+3x^2=4-x\)
\(\Leftrightarrow3x^2+2x+10-4+x=0\)
=>3x^2+3x+6=0
hay \(x\in\varnothing\)
Thu gọn các đơn thức sau và tìm bậc và hệ số
1/ x^3(-5/4x^2y)(2/5x^3y^4)
2/5xyz.4x^3y^2(-2x^5y)
3/ 4x^3y(-x^2y^5)(2xy)
1) \(x^3\left(\dfrac{-5}{4}x^2y\right)\left(\dfrac{2}{5}x^3y^4\right)\)
\(=\dfrac{-1}{2}x^8y^5\)
Vậy: Bậc là 14, phần hệ số là \(\dfrac{-1}{2}\)
2) \(5xyz.4x^3y^2\left(-2x^5y\right)\)
\(=-40x^9y^4z\)
Vậy: Bậc là 15, phần hệ số là \(-40\)
3) \(4x^3y\left(-x^2y^5\right)\left(2xy\right)\)
\(=-8x^6y^7\)
Vậy: Bậc là 14, phần hệ số là \(-8\)
thực hiện phép tính :
a) 5x+10/10xy^2 nhân 12x/x+2
b) x-4/3x-1 nhân 9x-3/x^2-16
c)4x+2/(x+4)^2/ chia 3(x+3)/x+4
d)5x-5/3x+3 chia x-1/x+1
a: \(=\dfrac{5\left(x+2\right)}{10xy^2}\cdot\dfrac{12x}{x+2}=\dfrac{60x}{10xy^2}=\dfrac{6}{y^2}\)
b: \(=\dfrac{x-4}{3x-1}\cdot\dfrac{3\left(3x-1\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{3}{x+4}\)
c: \(=\dfrac{2\left(2x+1\right)}{\left(x+4\right)^2}\cdot\dfrac{\left(x+4\right)}{3\left(x+3\right)}=\dfrac{2\left(2x+1\right)}{3\left(x+3\right)\left(x+4\right)}\)
d: \(=\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\cdot\dfrac{x+1}{x-1}=\dfrac{5}{3}\)
phân tích thành nhân tử
a)4x^2-12x+9-3(2x-3)(x+1)
b)25-42^2+8xy-4y^2
c)x^3-5x^2+4x-2(x^2-x)
d) 4(x-2)^2-5(x-2)+1
EM CẦN GẤP Ạ
a: \(4x^2-12x+9-3\left(2x-3\right)\left(x+1\right)\)
\(=\left(2x-3\right)^2-\left(2x-3\right)\left(3x+3\right)\)
\(=\left(2x-3\right)\left(2x-3-3x-3\right)\)
\(=-\left(x+6\right)\left(2x-3\right)\)
b: \(25-4x^2+8xy-4y^2\)
\(=25-\left(2x-2y\right)^2\)
\(=\left(5-2x+2y\right)\left(5+2x-2y\right)\)
1) tìm x :
a) (x-3)(x+3)-(x+5)(x-1)=6
b)(3x-2)^2-(2x+1)^2-(5x-1)(x+1)=20
c)(2x+1)(4x^2-2x+1)+(3-2x)(9+6x+4x^2)+12x=4
a). (x^4+4x^3+5+8)÷(2x+5)
b). (5x^3+14x^2+12x+8)÷(x+2)
c). (4x^2-4x+1)÷(2x-1)
d). (2x^3+5x^2+6x+15)÷(2x+5)