Những câu hỏi liên quan
TK
Xem chi tiết
NT
18 tháng 6 2023 lúc 21:29

M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2
(2x-5)^2020+(3y+4)^2022<=0

=>x=5/2 và y=-4/3

M=25/4+11*5/2*(-4/3)-16/9=-1159/36

Bình luận (0)
NK
Xem chi tiết
NM
6 tháng 11 2021 lúc 16:37

Sửa: \(\left(\dfrac{1}{3}-2x\right)^{2020}+\left(3y-x\right)^{2022}\le0\)

Mà \(\left(\dfrac{1}{3}-2x\right)^{2020}+\left(3y-x\right)^{2022}\ge0\) với mọi x,y

Do đó \(\left\{{}\begin{matrix}\dfrac{1}{3}-2x=0\\3y-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=\dfrac{1}{18}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=6+18=24\)

Bình luận (0)
MN
Xem chi tiết
NT
25 tháng 10 2021 lúc 22:35

Đề thiếu rồi bạn

Bình luận (0)
VA
Xem chi tiết
LC
16 tháng 10 2019 lúc 17:30

\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\left(1\right)\)

Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2020}\ge0;\forall x,y\\\left(3y+4\right)^{2018}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0;\forall x,y\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x-5\right)^{2020}=0\\\left(3y+4\right)^{2018}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)

Vậy...

Bình luận (0)
BM
Xem chi tiết
NN
14 tháng 9 2020 lúc 15:39

Vì \(\left(2x-5\right)^{2020}\ge0\forall x\)\(\left(5y+1\right)^{2022}\ge0\forall y\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)

mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)

Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
14 tháng 9 2020 lúc 15:45

( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0

Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x

            ( 5y + 1 )2022 ≥ 0 ∀ y

=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y

Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0

Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
PC
Xem chi tiết
VT
16 tháng 10 2019 lúc 17:57

\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\)

Ta có:

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2020}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall xy.\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0\) \(\forall xy.\)

\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0.\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)

\(\Rightarrow\left(2x-5\right)+\left(3y+4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)

Chúc bạn học tốt!

Bình luận (0)
PC
16 tháng 10 2019 lúc 16:12

giúp mình với

Bình luận (0)
PK
16 tháng 10 2019 lúc 16:45

Ta có:

(2x+5)2020 ≥ 0 với ∀ x

(3y+4)2018 ≥ 0 với ∀ y

⇒ (2x+5)2020 + (3y+4)2018 ≥ 0 với ∀ x, y

Mà (2x+5)2020 + (3y+4)2018 ≤ 0

⇒ (2x+5)2020 + (3y+4)2018 = 0

\(\left[{}\begin{matrix}\left(2x+5\right)^{2020}=0\\\left(3y+4\right)^{2018}=0\end{matrix}\right.\)\(\left[{}\begin{matrix}2x+5=0\\3y+4=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}2x=-5\\3y=-4\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\frac{-5}{2}\\y=\frac{-4}{3}\end{matrix}\right.\)

Vậy...

Học tốt❤

Bình luận (0)
HT
Xem chi tiết
TC
27 tháng 7 2021 lúc 21:17

undefined

Bình luận (0)
NT
27 tháng 7 2021 lúc 22:50

Ta có: \(\left(2x-8\right)^{2000}+\left(3y+4\right)^{2022}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-8=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=8\\3y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-\dfrac{4}{3}\end{matrix}\right.\)

Bình luận (0)
NH
Xem chi tiết
DT
22 tháng 6 2023 lúc 9:59

Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)

Do đó đề bài xảy ra khi và chỉ khi :

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)

Bình luận (0)
NH
22 tháng 6 2023 lúc 10:35

Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?

Bình luận (0)
TT
Xem chi tiết
NM
23 tháng 11 2021 lúc 20:37

\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\\ \Leftrightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\\ \Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\\ \Leftrightarrow M=\dfrac{25}{4}-11\cdot\dfrac{4}{3}\cdot\dfrac{5}{2}-\dfrac{16}{9}=\dfrac{25}{4}-\dfrac{110}{3}-\dfrac{16}{9}=-\dfrac{1159}{36}\)

Bình luận (1)