Tìm điều kiện xác định.
\(y=\frac{1}{\sqrt{x^2-1-\sqrt{x^2+6x+3}}}\)
Tìm điều kiện xác định
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
a: ĐKXĐ: \(x\in R\)
b: ĐKXĐ: \(x\in R\)
Tìm điều kiện xác định
\(A=\sqrt{x^2-5x+6}\)
\(B=\dfrac{x}{\sqrt{7x^2-8}}\)
\(C=\sqrt{-9x^2+6x-1}-\dfrac{1}{\sqrt{x^2+x+2}}\)
\(D=\sqrt{3-x^2}-\sqrt{\dfrac{2021}{3x+2}}\)
\(E=\sqrt{\dfrac{3x^2}{2x+1}-1}\)
\(F=\sqrt{25x^2-10x+1}+\dfrac{1}{1-5x}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
\(\left(\frac{\sqrt{x}-2}{2\sqrt{x}-2}+\frac{3}{2\sqrt{x}+2}-\frac{\sqrt{x}+3}{2\sqrt{x}+2}\right):\left(1-\frac{\sqrt{x}-3}{x-1}\right)\)
a . Tìm điều kiện xác định
b. Rút gọn biểu thức
Tìm điều kiện của x để biểu thức xác định
a) \(\sqrt{-2x^2+3}\)
b) \(\sqrt{6x^2-6}\)
c) \(\sqrt{\dfrac{3}{-x^2+5}}\)
d) \(\sqrt{-x^3-5}\)
a: ĐKXĐ: \(-\dfrac{\sqrt{6}}{2}\le x\le\dfrac{\sqrt{6}}{2}\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
c: ĐKXĐ: \(-\sqrt{5}< x< \sqrt{5}\)
d: ĐKXĐ: \(x\le\sqrt[3]{-5}\)
Cho P = \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a. Tìm điều kiện xác định
b. Rút gọn
c. Tìm Pmax
a. ĐKXĐ : \(\orbr{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\end{cases}}\)<=> \(\orbr{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b. \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
là bằng 2 phần 3 phải ko
a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b) \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(P=\frac{15\sqrt{x}-11}{x+3\sqrt{x}-\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(P=\frac{15\sqrt{x}-11}{\sqrt{x}\left(\sqrt{x+3}\right)-\left(\sqrt{x}+3\right)}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(P=\frac{15\sqrt{x}-11+\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{15\sqrt{x}-11+2\sqrt{x}-3x+6-9\sqrt{x}-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{7\sqrt{x}-5x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
c) Ta có :
\(P=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
+)Với \(x\ge0,x\ne1\)ta có : \(\sqrt{x}+3\ge3\left(1\right)\)
+) \(5\sqrt{x}\ge0\Rightarrow-5\sqrt{x}\le0\Rightarrow-5\sqrt{x}+2\le2\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{2}{3}\)
Vậy max \(P=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Cho C = \(\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)
a)Tìm điều kiện xác định
b)Rút gọn
c)Tìm x thuộc Z để C thuộc Z
Tìm điều kiện xác định
A=\(\left(\sqrt{1-x}+\frac{3}{\sqrt{x+1}}\right):\left(1+\frac{3}{\sqrt{1-x^2}}\right)\)
ĐKXĐ : \(1-x>0\Rightarrow x<1\) và \(1+x>0\Rightarrow x>-1\)
Vậy -1 < x < 1
\(\sqrt{x^2+6x+11}\)
\(\sqrt{\frac{\left(2x-3\right)\left(x+2\right)}{\left(x+3\right)^2}}\)
\(\sqrt{\frac{-x^2-5}{x^2+1}}\)
Tìm điều kiện xác định của mỗi căn thức
Giúp mình với mình đang cần gấp
a) ĐKXĐ: \(x^2+6x+11\ge0\)đúng\(\forall x\inℝ\)
b) ĐKXĐ: \(\hept{\begin{cases}\left(2x-3\right)\left(x+2\right)\ge0\\x+3\ne0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le-2,x\ne-3\\x\ge\frac{3}{2}\end{cases}}}\)
c) ĐKXĐ: \(-x^2-5\ge0\)Vô nghiệm\(\forall x\inℝ\)
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
1. Nêu Điều kiện xác định và rút gọn biểu thức A
2. Tính giá trị của biểu thức A khi x=9
3. Khi x thỏa mãn điều kiện xác định . hãy tìm giá trị nhỏ nhất của biểu thức B , với B=A (x-1)