Những câu hỏi liên quan
PT
Xem chi tiết
VG
31 tháng 10 2017 lúc 20:52

Đặt \(\sqrt[3]{x+45}=a\Rightarrow a^3=x+45\)

\(\sqrt[3]{x-16}=b\Rightarrow b^3=x-16\)

Ta có:\(\hept{\begin{cases}a-b=1\\a^3-b^3=61\end{cases}\Rightarrow\hept{\begin{cases}b=a-1\\\left(a-b\right)^3+3ab\left(a-b\right)=61\end{cases}}}\)

\(\Rightarrow1+3a\left(a-1\right)=61\) (vì a-b=1)

\(\Leftrightarrow a^2-a-20=0\)

\(\Leftrightarrow\left(a-5\right)\left(a+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=5\\a=-4\end{cases}\Rightarrow\orbr{\begin{cases}a^3=125\\a^3=-64\end{cases}\Rightarrow}\orbr{\begin{cases}x=80\\x=-109\end{cases}}}\)

Vậy nghiệm của pt là: x=80;x=-109

Bình luận (0)
PT
2 tháng 11 2017 lúc 12:05

mình cảm ơn bạn see you again

Bình luận (0)
KN
Xem chi tiết
H9
24 tháng 9 2023 lúc 10:10

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

Bình luận (0)
TT
Xem chi tiết
LK
20 tháng 1 2023 lúc 8:30

Thấy : \(x^2-4x+16=\left(x-2\right)^2+12>0\forall x\)

P/t \(\Leftrightarrow2\left(x^2-4x+16\right)-36+\sqrt{x^2-4x+16}=0\)

Đặt \(t=\sqrt{x^2-4x+16}>0\) ; khi đó : 

\(2t^2+t-36=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-\dfrac{9}{2}\left(L\right)\end{matrix}\right.\)

Với t = 4  hay \(\sqrt{x^2-4x+16}=4\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy ... 

 

Bình luận (2)
MH
20 tháng 1 2023 lúc 8:41

Câu 1 bạn trên giải rồi mik k giải nx nha

2/ \(3\left(x^2+2\right)=10\sqrt{x^3+1}\)

\(3\left(x^2-x+1\right)+3\left(x+1\right)=10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b\ge0\end{matrix}\right.\)

pt⇔ \(3a^2+3b^2-10ab=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3b=b\\a=3b\end{matrix}\right.\)

Đến đây bạn tự giải tiếp nha

3/ \(\sqrt{3-3x}-\sqrt{3+x}=2\)

\(\left(\sqrt{3-3x}-3\right)-\left(\sqrt{3+x}-1\right)=0\)

\(\dfrac{-3\left(x+2\right)}{\sqrt{3-3x}+3}-\dfrac{x+2}{\sqrt{3+x}+1}=0\)

+) \(x=-2\left(TM\right)\)

+) \(x\ne-2\Rightarrow\dfrac{-3}{\sqrt{3-3x}+3}-\dfrac{1}{\sqrt{3+x}+1}=0\)

Vì VT<0 => ptvn

Bình luận (0)
LK
20 tháng 1 2023 lúc 8:43

2 ) ĐK : \(x\ge-1\)

P/t \(\Leftrightarrow9\left(x^2+2\right)^2=100\left(x^3+1\right)\)

\(\Leftrightarrow9x^4+36x^2+36=100x^3+100\)

\(\Leftrightarrow9x^4-100x^3+36x^2-64=0\)

\(\Leftrightarrow\left(x^2-10x-8\right)\left(9x^2-10x+8\right)=0\)

\(\Leftrightarrow x^2-10x-8=0\) ( 9x^2 - 10x + 8 > 0 )

\(\Leftrightarrow x=5\pm\sqrt{33}\) ( t/m ) 

Vậy ... 

Bình luận (0)
H24
Xem chi tiết
TG
16 tháng 9 2021 lúc 9:01

a) \(3x-2\sqrt{x-1}=4\) (ĐK: x ≥ 1)

\(\Rightarrow3x-2\sqrt{x-1}-4=0\)

\(\Rightarrow3x-6-2\sqrt{x-1}+2=0\)

\(\Rightarrow3\left(x-2\right)-2\left(\sqrt{x-1}-1\right)=0\)

\(\Rightarrow3\left(x-2\right)-2.\dfrac{x-2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow\left(x-2\right)\left[3-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)

*TH1: x = 2 (t/m)

*TH2: \(3-\dfrac{2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow3=\dfrac{2}{\sqrt{x-1}+1}\)

\(\Rightarrow3\sqrt{x-1}+3=2\)

\(\Rightarrow3\sqrt{x-1}=-1\) (vô lí)

Vậy S = {2}

b) \(\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\) (ĐK: \(-\dfrac{1}{4}\le x\le3\) )

\(\Rightarrow\sqrt{4x+1}-3-\sqrt{x+2}+2-\sqrt{3-x}+1=0\)

\(\Rightarrow\dfrac{4x-8}{\sqrt{4x+1}+3}-\dfrac{x-2}{\sqrt{x+2}+2}+\dfrac{x-2}{\sqrt{3-x}+1}=0\)

\(\Rightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{\sqrt{x+2}+2}+\dfrac{1}{\sqrt{3-x}+1}\right)=0\)

=> x = 2

 

 

 

Bình luận (0)
NM
16 tháng 9 2021 lúc 9:03

\(a,3x-2\sqrt{x-1}=4\left(x\ge1\right)\\ \Leftrightarrow-2\sqrt{x-1}=4-3x\\ \Leftrightarrow4\left(x-1\right)=16-24x+9x^2\\ \Leftrightarrow9x^2-28x+20=0\\ \Leftrightarrow\left(x-2\right)\left(9x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{10}{9}\left(tm\right)\end{matrix}\right.\)

\(b,\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\left(-\dfrac{1}{4}\le x\le3\right)\\ \Leftrightarrow4x+1+x+2-2\sqrt{\left(4x+1\right)\left(x+2\right)}=3-x\\ \Leftrightarrow-2\sqrt{\left(4x+1\right)\left(x+2\right)}=2-6x\\ \Leftrightarrow\sqrt{4x^2+9x+2}=3x-1\\ \Leftrightarrow4x^2+9x+2=9x^2-6x+1\\ \Leftrightarrow5x^2-15x-1=0\\ \Leftrightarrow\Delta=225+20=245\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15-\sqrt{245}}{10}=\dfrac{15-7\sqrt{5}}{10}\left(ktm\right)\\x=\dfrac{15+\sqrt{245}}{10}=\dfrac{15+7\sqrt{5}}{10}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{15+7\sqrt{5}}{10}\)

Bình luận (0)
HU
Xem chi tiết
H24
18 tháng 11 2021 lúc 20:47

a, ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{3}{2}.2\sqrt{1+3x}-\dfrac{5}{3}.3\sqrt{1+3x}-\dfrac{1}{4}.4\sqrt{1+3x}=1\\ \Leftrightarrow3\sqrt{1+3x}-5\sqrt{1+3x}-\sqrt{1+3x}=1\\ \Leftrightarrow-3\sqrt{1+3x}=1\\ \Leftrightarrow\sqrt{1+3x}=-\dfrac{1}{3}\left(vô.lí\right)\)

b, \(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\\ \Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (0)
LL
18 tháng 11 2021 lúc 20:47

a) ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(pt\Leftrightarrow3\sqrt{3x+1}-5\sqrt{3x+1}-\sqrt{3x+1}=1\)

\(\Leftrightarrow-3\sqrt{3x+1}=1\Leftrightarrow\sqrt{3x+1}=-\dfrac{1}{3}\left(VLý\right)\)

Vậy \(S=\varnothing\)

b) \(pt\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (0)
PP
Xem chi tiết
LT
Xem chi tiết
TN
8 tháng 9 2017 lúc 19:21

ĐK:\(x\ge4\)

\(2\sqrt{x-4}+\sqrt{x+1}=\sqrt{2x-3}+\sqrt{4x-16}\)

\(\Leftrightarrow2\sqrt{x-4}+\sqrt{x+1}-\sqrt{5}=\sqrt{2x-3}-\sqrt{5}+\sqrt{4x-16}\)

\(\Leftrightarrow2\sqrt{x-4}+\frac{x+1-5}{\sqrt{x+1}+\sqrt{5}}=\frac{2x-3-25}{\sqrt{2x-3}+\sqrt{5}}+\sqrt{4\left(x-4\right)}\)

\(\Leftrightarrow2\sqrt{x-4}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}-\frac{2\left(x-4\right)}{\sqrt{2x-3}+\sqrt{5}}-\sqrt{4\left(x-4\right)}=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{x-4}}+\frac{1}{\sqrt{x+1}+\sqrt{5}}-\frac{2}{\sqrt{2x-3}+\sqrt{5}}-\frac{2}{\sqrt{x-4}}\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{1}{\sqrt{x+1}+\sqrt{5}}-\frac{2}{\sqrt{2x-3}+\sqrt{5}}\right)=0\)

\(\Rightarrow x=4\). Và \(\sqrt{2x-3}+\sqrt{5}=2\sqrt{x+1}+2\sqrt{5}\)

\(\Leftrightarrow\sqrt{2x-3}=2\sqrt{x+1}+\sqrt{5}\)

\(\Leftrightarrow2x-3=4x+9+4\sqrt{5\left(x+1\right)}\)

\(\Leftrightarrow-2x-12=4\sqrt{5\left(x+1\right)}\)*vô nghiệm vì \(VT< 0;VP>0\forall x\ge4\)*

Vậy \(x=4\)

Bình luận (0)
PL
Xem chi tiết
NT
12 tháng 8 2021 lúc 21:04

Ta có: \(\sqrt{25x-125}-3\cdot\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)

\(\Leftrightarrow5\sqrt{x-5}-3\cdot\dfrac{\sqrt{x-5}}{3}-\dfrac{1}{3}\cdot3\sqrt{x-5}=6\)

\(\Leftrightarrow3\sqrt{x-5}=6\)

\(\Leftrightarrow x-5=4\)

hay x=9

Bình luận (0)
HN
Xem chi tiết
AH
25 tháng 6 2018 lúc 0:26

Câu 1:

ĐK: \(0\leq x\leq 1\)

Áp dụng bđt Bunhiacopxky:

\(\text{VT}^2=(\sqrt{1-\sqrt{x}}+\sqrt{4+x})^2\leq [1-\sqrt{x}+\frac{4+x}{2}](1+2)\)

\(\Leftrightarrow \text{VT}^2\leq 3\left(3+\frac{x-2\sqrt{x}}{2}\right)\)

\(0\leq x\leq 1\Rightarrow x-2\sqrt{x}\leq \sqrt{x}-2\sqrt{x}=-\sqrt{x}\leq 0\)

Do đó: \(\text{VT}^2\leq 3.3=9\Rightarrow \text{VT}\leq 3\)

Dấu bằng xảy ra khi :

\(\frac{\sqrt{1-\sqrt{x}}}{1}=\frac{\sqrt{4+x}}{2}; x=\sqrt{x}\Rightarrow x=0\)

Bình luận (0)
AH
25 tháng 6 2018 lúc 0:37

2)

\(\sqrt[3]{x+45}-\sqrt[3]{x-16}=1\)

Đặt \(\sqrt[3]{x+45}=a; \sqrt[3]{x-16}=b\). Ta thu được HPT:

\(\left\{\begin{matrix} a-b=1\\ a^3-b^3=61\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a-b=1\\ (a-b)^3+3ab(a-b)=61\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a-b=1\\ 1+3ab=61\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a-b=1\\ ab=20\end{matrix}\right.\)

Thay \(a=b+1\Rightarrow (b+1)b=20\)

\(\Leftrightarrow b^2+b-20=0\Leftrightarrow (b-4)(b+5)=0\)

\(\Rightarrow \left[\begin{matrix} b=4\rightarrow x=80\\ b=-5\rightarrow x=-109\end{matrix}\right.\)

Bình luận (2)